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Fig. 3. Adoptive transfer of spleen CD4-OVA- 
specific T cells derived from T-bet-deficient 
mice induced increased AHR and increased IL-4 
production in the airways. After OVA sensitiza- 
tion, CD4-positive cells were sorted from the 
spleen of WT or T-bet -/- mice by using anti- 
CD4 beads (Dynal, NY) (1.5 x 106 cells/mouse) 
and transferred intraperitoneally into histo- 
compatible SCID mice (C.B.-17lcr scid/scid; Tac- 
onic laboratories, Germantown, PA). (A) AHR in 
response to an increasing concentration of in- 
travenous methacholine was determined by 
standard measures of pulmonary mechanics in 
anesthetized and mechanically ventilated mice. 
The effective dose of intravenous methacholine 
required to double pulmonary resistance is 
termed ED200 RE; higher values of ED0oo RL 
denote lower levels of airway responsiveness 
(12). Adoptive transfer of OVA-specific CD4 
cells derived from mice lacking T-bet induced 
AHR in SCID mice as compared with similar 
mice reconstituted with OVA-specific CD4 cells 
derived from WT matched littermates (*P = 
0.05, **P = 0.0029). (B) An increase in IL-4 
production in the BALF was observed only in 
SCID mice reconstituted with CD4 cells derived 
from T-bet-/-) mice (*P < 0.05). 
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derived from T-bet-/- mice exhibited in- 
creased IL-4 in the BALF as compared with 
recipient mice reconstituted with spleen 
CD4+ cells derived from WT mice (Fig. 3B), 
demonstrating that the AHR observed in 
T-bet-/- mice is T cell-mediated. 

Our data demonstrate that targeted dele- 
tion of T-bet, in the absence of an induced 
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logical and inflammatory phenotype in mu- 
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cient mice demonstrate airway remodeling 
consistent with asthma that is reminiscent of 
the human disease. This phenotype exists in 
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types (1, 2) that is coupled to the Jak-STAT 
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infections (8-11). Although much is known 
about the structure, function, and signaling 
pathways of the IFN-y receptor complex, the 
control of IFN-y expression in immune sys- 
tem cells is relatively poorly understood. 

We recently identified T-bet, a member of 
the T-box family of transcription factors (12, 
13). T-bet, whose expression is primarily lim- 
ited to the immune system, is rapidly induced 
in early developing THl cells and is absent in 
developing TH2 cells (14, 15). Introduction of 
T-bet into polarized CD4 TH2 cells and their 
CD8 counterparts, Tc2 primary T cells, re- 
sults in the conversion of these cells into TH1 
and Tcl cells, respectively, as evidenced by 
their production of IFN-^y and repression of 
IL-4 and IL-5 production. In these studies, 
T-bet appeared to simultaneously induce TH 1 
and Tcl differentiation and inhibit TH2 and 
Tc2 differentiation. T-bet expression corre- 
lates with IFN--y expression in all cells exam- 
ined, and T-bet can transactivate the IFN-, 
gene and induce both endogenous IFN-^y pro- 
duction and chromatin remodeling of individ- 
ual IFN-y alleles (16). Thus, T-bet may ac- 
tivate TH1 and Tc 1 genetic programs in part 
by directly controlling IFN-y gene transcrip- 
tion. Here we show that T-bet is required for 
IFN--y production and lineage commitment of 
CD4 T cells but, unexpectedly, not of CD8 T 
cells. 

To further examine the role of T-bet in 
IFN-y production and in T cell development 
and differentiation, we disrupted the T-bet 
gene in mice by homologous recombination. 
Mice homozygous for the T-bet deletion (T- 
bet-'-) were born at the expected Mendelian 
ratios and appeared phenotypically normal 
(17). Previously, retrovirally transduced T- 
bet strongly induced IFN-y production from 
CD4 T cells (14, 16). To examine whether 
endogenous T-bet controls CD4 T cell IFN-y 
production, we purified CD4 T cells from the 
lymph nodes of wild-type (T-bet+/+) mice 
and from mice homozygous (T-bet-/-) or 
heterozygous (T-bet+'-) for deletion of T- 
bet; stimulated the cells with plate-bound an- 
tibodies to CD3 (anti-CD3) and anti-CD28; 
and measured IFN-y/ production during pri- 
mary stimulation. A marked decrease in 
IFN-y production by T-bet-'- CD4 T cells 
was observed even in the presence of IL-12, 
a potent inducer of IFN-y production (Fig. 
1A). These results demonstrate that T-bet is 
required for CD4 T cell IFN-y production. 

Naive CD4 T cells differentiate into dis- 
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tinct TH cell subsets, called TH1 and TH2 (18, 
19), that are defined by distinct cytokine pro- 
files and effector functions. To determine 
whether T-bet plays a central role in T helper 
cell development, we generated TH effector 
populations from T-bet+/+, T-bet+/-, and 
T-bet-/- CD4 T cells stimulated through the 
T cell receptor (TCR) under neutral condi- 
tions or under conditions that induce either a 
TH1 or TH2 phenotype and upon restimula- 
tion, cytokine production assayed by en- 
zyme-linked immunosorbent assay (ELISA) 
and intracellular cytokine staining (ICC). Un- 
der neutral conditions, T-bet-/- CD4 T cells 
produced substantially less IFN-y than con- 
trol T-bet+/+ CD4 T cells (Fig. lB). This 
decrease in IFN-y production was accompa- 
nied by an increase in production of the 
TH2-specific cytokines IL-4 and IL-5. Even 
when stimulated under TH1-inducing condi- 
tions, T-bet-'- cells continued to produce 
very low levels of IFN--y and were unable to 
suppress production of IL-4 and IL-5 (Fig. 
1B). ICC analysis showed a marked decrease 
in the number of IFN-y-producing cells in 
the absence of T-bet and a corresponding 
increase in IL-4- and IL-5-producing cells 
(17). Thus, T-bet controls not only immedi- 
ate cytokine production from naive CD4 T 
cells but also profoundly affects long-term T 
helper differentiation. In the absence of T- 
bet, CD4 T cells fail to differentiate into the 
TH1 lineage and default to a TH2 fate. Thus, 
T-bet not only induces TH1 development but 
also actively suppresses TH2 differentiation. 

We also observed that heterozygous 
T-bet+- CD4 T cells, whose absence of one 
T-bet allele yielded a corresponding decrease 
in T-bet mRNA and protein (17), displayed 
an intermediate phenotype of cytokine pro- 
duction (Fig. 1B). ICC analysis revealed that 
81% of wild-type (WT) TIH1 cells were high- 
level IFN-y producers, whereas the interme- 
diate phenotype observed in the heterozygous 
T cells was the result of about half the num- 
ber of cells producing WT levels of IFN-y 
(42% high-level producers) (17). Therefore, 
the ability of T-bet to control IFN-^y produc- 
tion is highly dosage sensitive, a finding con- 
sistent with the known function of other T- 
box family genes in which haploid insuffi- 
ciency of Tbx3 and Tbx5 leads to the genetic 
disorders ulnar mammary and Holt-Oram 
syndromes, respectively (20, 21). Alterna- 
tively, the expression of T-bet may be mono- 
allelic, rather than biallelic, as documented 
for certain cytokine genes (e.g., IL-2 and 
IL-4) (22, 23). 

Immunization with protein antigens typi- 
cally induces a mixed TH1/TH2 response that 
leads to B cell immunoglobulin heavy-chain 
isotype switching to immunoglobulin G2a 
(IgG2a) and IgGl, respectively. IFN-y-defi- 
cient T-bet-'- mice might produce an altered 
pattern of Ig isotypes following protein anti- 

gen immunization. Immunization of WT and 
T-bet-/- mice with TNP-KLH (2,4,6-trini- 
trophenol-keyhole limpet hemocyanin) re- 
vealed that T-bet-/- mice produced de- 
creased amounts of TNP-specific IgG2a and 
a small increase in TNP-specific IgG1 as com- 
pared with controls at day 12 (Table 1). Addi- 
tionally, we have recently determined a role for 
T-bet in B cells in controlling the transcription 
of germ line IgG2a (24). CD4 T cells isolated 
from TNP-KLH-immunized mice failed to pro- 
duce IFN-'y in response to KLH and produced 
higher levels of IL-4 and IL-5 as compared with 
control mice (Fig. 1C). These results provide in 
vivo confirmation of our in vitro data demon- 
strating that T-bet-/- CD4 cells fail to generate 
TH1 responses and default to the TH2 pathway. 

A critical function of CD4 T cells in vivo 
is to combat infection by certain pathogens. 
Infection with the intracellular protozoan 
Leishmania major (L. major) is a well-char- 
acterized model for studying the in vivo dif- 
ferentiation and function of CD4 T cells. 
Inbred mouse strains such as C57BL/6 (B6) 
control infection by developing a curative 
THl1 response, whereas genetically suscepti- 
ble mice such as BALB/c develop a noncu- 
rative TH2 response and fail to control the 
infection (25). We therefore tested the ability 
of the normally resistant B6 strain to control 
L. major infection in the absence of T-bet. 
After infection with L. major, popliteal 
lymph node cells from T-bet-'- B6 mice 
produced very little IFN-y as compared with 
littermate controls (Fig. 1D) (17). T-bet-/- 
B6 mice failed to cure a L. major infection, 
and their susceptibility to infection was sim- 
ilar to that of the naturally susceptible 
BALB/c strain as assessed by lesion size 
(Fig. 1E), parasite burden, and cellular infil- 
trates (17, 24). These results demonstrate that 
T-bet is central to the in vivo control of TH 
cell lineage commitment and subsequent TH 
cell effector function. 

NK cells are an essential early component 
of the host response to infection and secrete 
large amounts of IFN-y in response to cyto- 
kines such as IL-12 and IL-18. We observed 
the coordinate induction of T-bet with IFN-Y 
secretion in several NK cell lines (14, 24). To 
determine whether T-bet was essential for 
IFN-y production from primary NK cells, we 
purified splenic NK cells from T-bet-7-, 
T-bet+'-, and T-bet+/+ mice using the 
DX5 marker (26) and measured IFN-y pro- 
duction 72 hours after the indicated cyto- 
kine treatment. A decrease in IFN-^y/ pro- 
duction was observed from T-bet-'- and 
T-bet+- NK cells (Fig. 2A), which corre- 
lated with a decreased percentage of indi- 
vidual IFN-y-producing cells (24). Thus, 
similar to CD4 T cells, T-bet is essential for 
optimal IFN-/ production from purified 
NK cells. T-bet-'- NK cells were also 
markedly impaired in their ability to spon- 
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taneously lyse the NK-sensitive target cell 
line, YAC-1 (Fig. 2B, left). This dimin- 
ished cytolytic function of T-bet-/- NK 
cells was more severe than observed in the 
IFN-/y-'- NK cells (6). To determine if 
there was a global defect in T-bet-/- NK 
cytolytic activity, we injected T- bet-/- or 
control mice with poly(I:C) 24 hours before 
harvesting splenocytes, which preactivates 
NK cells exclusively through the IFN-ao 
signaling pathway (27). T-bet-/- and 
T-bet'/+ NK cells when activated in vivo 
with poly(I:C) lysed tumor cell targets 
equivalently (Fig. 2B, right). These results 
demonstrate that T-bet is required for both 

normal NK cell IFN-y production and ef- 
fector function and suggest that T-bet may 
control other genes involved in NK cyto- 
lytic activity that are likely to overlap with 
IFN-oa-induced genes. 

IFN-^y production from cytotoxic CD8 T 
cells is a key mechanism by which these 
cells combat viral infections. Northern blot 
analysis of purified CD8 T cells that were 
activated with plate-bound anti-CD3 and 
anti-CD28 and the indicated cytokines 
demonstrates the coordinate expression and 
induction of both T-bet and IFN-~y (Fig. 
3A), as occur in CD4 T cells. We next 
examined whether IFN-y production in 

CD8 T cells was affected by T-bet deficien- 
cy. Unexpectedly, we found no difference 
in the level of IFN--y produced nor in the 
number of IFN-'y-producing cells among 
the three genotypes (Fig. 3, B and C). Thus, 
although retroviral transduction of T-bet 
into CD8 Tc2 cells converts them into Tcl 
cells (14), in a physiological setting, T-bet 
is not required for IFN-y gene transcription 
in the CD8 T cell lineage. This finding was 
also reflected in the capacity of T-bet-/- 
CD8 T cells to display equivalent cytotoxic 
activities (Fig. 3D). However, the presence 
of T-bet in CD8 T cells, and the regulation 
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The analysis of the immune system in mice 
that lack T-bet, as described above, establishes 
T-bet as a transcription factor required for TH1 

Table 1. TNP-specific serum IgG levels. 
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above. Results are the mean ? 
SEM of three mice in each group 
and are representative of two in- 
dependent experiments. 
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to produce the hallmark TH1 cytokine, IFN-y, 
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specific cytokines IL-4 and IL-5. Mice that 
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from the TCR and cytokine receptors, sug- 
gest that this transcription factor may play 
a distinct role in CD8 T cells. 
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Invasive stages (ookinete, sporozoite, and 
merozoite) of the malaria parasite penetrate 
specific host cell types at different stages of 
the life cycle. The 235-kD rhoptry proteins 
(Py235) of the rodent parasite Plasmodium 
yoelii yoelii are implicated in the type of 
erythrocyte (normocyte or reticulocyte) in- 
vaded by merozoites and in parasite virulence 
(1-3). There are -35 copies of py235 genes 
in the parasite genome. Analysis of the tran- 
scription pattern of py235 in blood stages has 
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revealed a mechanism of clonal phenotypic 
variation (4): Merozoites from a single in- 
fected erythrocyte differ with respect to 
Py235 in their rhoptries, suggesting a unique 
survival strategy (4, 5). Homologs of Py235 
are found in other malaria species (6-13), and 
antibodies to both Py235 and a P. falciparum 
homolog inhibit merozoite invasion (1, 2, 
13). We investigated the transcription pattern 
of py235 during the different stages of the 
parasite's life cycle and the effect of specific 
antibodies on cell invasion. 

We used a panel of antibodies specific to 
Py235 to establish that Py235 proteins are 
found in sporozoites and infected hepato- 
cytes. A 235-kD protein was detected in ex- 
tracts of sporozoites (Fig. 1A). By immuno- 
fluorescence, staining was only obtained with 
the pAb-S6 and pAb-F sera, indicating that 
Py235 proteins in pre-erythrocytic stages dif- 
fer from those in erythrocytic parasites. All 
sporozoites were labeled, with diffuse stain- 
ing outlining each cell and regions of more 
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intense label at both ends (Fig. iB). Infected 
hepatocytes were labeled with a patchy pat- 
tern that may correspond to developing mero- 
zoites (Fig. 1C). Evidence that sporozoite 
Py235 proteins have a functional role was 
obtained from antibody inhibition of sporo- 
zoite invasion of cultured primary hepato- 
cytes (14). A Py235-specific antibody reac- 
tive with the proteins in sporozoites inhibited 
invasion, but an antibody to Py235 expressed 
only during blood stages did not inhibit inva- 
sion (Fig. ID). 

We analyzedpy235 transcripts using nest- 
ed reverse transcription-polymerase chain re- 
action (RT-PCR). The size-polymorphic 3'- 
end ofpy235 (4, 15) (Fig. 2A) was amplified 
with RNA purified from 10 to 100 oocysts 
(found on a single midgut) or from 10,000 to 
100,000 salivary gland sporozoites (265BY 
line) (Fig. 2B). A single-sized fragment was 
consistently amplified from early (5-day) and 
mature (10-day) oocysts (Fig. 2B, + lanes) 
and from different batches of salivary gland 
sporozoites (Fig. 2B, + lanes); in contrast, 
multiple-sized products were obtained with 
RNA purified from an equivalent number of 
erythrocytic parasites (Fig. 2C). Sequencing 
of about 200 different cloned fragments de- 
rived from at least three independent RT- 
PCRs showed that these single products all 
had the same sequence (Fig. 2D, type IIb). A 
single band was also consistently amplified 
from RNA extracted from liver-stage para- 
sites grown in vitro or in vivo (Fig. 2C), and 
sequence analysis of about 100 cloned prod- 
ucts also showed that they had the identical 
sequence. No transcript was detected in very 
early hepatic trophozoites (in liver biopsies 3 
hours after sporozoite inoculation), indicating 
that the sporozoite py235 mRNA is degraded 
very soon after hepatocyte invasion. 

Although multiple py235 genes are tran- 
scribed in the erythrocytic stages (4, 15), it is 
not known how soon this pattern is estab- 
lished after initiation of blood infection by 
hepatic merozoites. Therefore, we prepared 
RNA from blood samples of sporozoite-in- 
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Members of a multigene family in the rodent malaria parasite Plasmodiumyoelii 
yoelii code for 235-kilodalton proteins (Py235) that are located in the merozoite 
apical complex, are implicated in virulence, and may determine red blood cell 
specificity. We show that distinct subsets of py235 genes are expressed in 
sporozoites and hepatic and erythrocytic stages. Antibodies to Py235 inhibited 
sporozoite invasion of hepatocytes. The switch in expression profile occurred 
immediately after transition from one stage to another. The results suggest that 
this differential expression is driven by strong biological requirements and 
provide evidence that hepatic and erythrocytic merozoites differ. 
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