
hours at 32?C (Fig. 4B; note the appearance 
of VSV-G staining at the cell surface after 60 
min only in control cells). Therefore, DAG 
was required for transport of proteins from 
the TGN to the cell surface. 

Our findings reveal that DAG is re- 
quired for the recruitment of PKD to the 
TGN and in the stages leading to the for- 
mation of transport carriers in mammalian 
cells. The obvious challenge now is to de- 
termine how DAG is generated in the TGN 
and how its levels are regulated during 
protein transport specifically from the TGN 
to the plasma membrane. 
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The evolution of complex social behavior is 
among the most important events in the his- 
tory of life (1). Interest in the genes underly- 
ing the expression of key social traits is 
strong because knowledge of the genetic ar- 
chitecture will lead to increasingly realistic 
models of social evolution, while identifica- 
tion of the products of major genes can elu- 
cidate the molecular bases of social behavior 
(2). Few studies have succeeded in showing 
that complex social behaviors have a herita- 
ble basis, and fewer still have suggested that 
variation in these behaviors is attributable to 
the action of one or few genes of major effect 
(3, 4). No candidate genes with major effects 
on key social polymorphisms have been iden- 
tified previously. 
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The fire ant Solenopsis invicta displays a 
fundamental social polymorphism that ap- 
pears to be under simple genetic control (5, 
6). A basic feature of colony social organi- 
zation, the number of egg-laying queens, is 
associated with variation at the gene Gp-9. In 
the United States, where this species has been 
introduced, colonies composed of workers 
bearing only the B allele at Gp-9 invariably 
have a single queen (monogyne social form), 
whereas colonies with workers bearing the 
alternate, b allele have multiple queens (po- 
lygyne form) (4). The two social forms differ 
in many key reproductive and life history 
characteristics (7), so that the presence of the 
b allele in a colony of workers with the b 
allele induces a fundamental and far-reaching 
shift in the social system of this ant. Variation 
at Gp-9 has been assessed by starch-gel pro- 
tein electrophoresis (SGPE) coupled with 
nonspecific protein staining; thus, the gene 
product and the mechanisms by which it may 
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influence social behavior were unknown. 
We determined the amino acid sequences 

of several peptide fragments of the GP-9 
protein by Edman degradation (8). Degener- 
ate deoxyinosine-oligonucleotide primers (9) 
corresponding to the NH2-terminus and an 
internal peptide fragment were used to am- 
plify the cDNA recovered from reverse tran- 
scription of mRNA (10). The amplified frag- 
ments were cloned and sequenced. The par- 
tial nucleotide sequences of the transcripts 
then were used to design nondegenerate 
primers for recovering the full-length mRNA 
transcripts with a 5' and 3' rapid amplifica- 
tion of cDNA ends approach (5' and 3' 
RACE) (11). The cap site of Gp-9 was iden- 
tified, and its full-length cDNA was found to 
be 672 base pairs (bp) in length, excluding 
the polyadenylate tail. The transcript contains 
an open reading frame of 459 bp, encoding a 
precursor protein of 153 amino acids (Fig. 1). 
The mature GP-9 protein, when cleaved of its 
19-residue signal peptide (12), has an esti- 
mated molecular mass of 14.7 kD. Amplifi- 
cation and sequencing of genomic DNA re- 
vealed that the Gp-9 gene is 1700 bp in 
length, containing five exons and four introns 
(Fig. 1A). 

GenBank BLASTX searches revealed that 
Gp-9 most closely resembles genes encoding 
moth pheromone-binding proteins (PBPs). 
Although the amino acid sequence identity is 
modest (26%), PBPs from different moth 
species generally have low identity (13), and 
the size and structure of GP-9 coincide with 
the consensus characteristics of proteins of 
this class. Importantly, GP-9 shares with all 
other PBPs six characteristically spaced cys- 
teine residues (Fig. 1, B and C) (14). Insect 
PBPs are crucial molecular components in 
the process of chemical recognition of con- 
specifics, acting to transport odorant mole- 
cules from cuticular pores to receptors on 
sensory neurons in chemosensilla (15). So- 
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conserved in South American fire ant species exhibiting social polymorphism 
and suggest that positive selection has driven the divergence between the 
alleles associated with alternate social organizations. This study demonstrates 
that single genes of major effect can underlie the expression of complex 
behaviors important in social evolution. 
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lenopsis invicta workers regulate the number 
and identity of egg-laying queens in a colony 
by accepting queens that produce appropriate 
chemical signals and destroying those that do 
not (4, 16); thus, the core feature of colony 
social organization, the number of egg-laying 
queens, is mediated by worker recognition of 
and subsequent discrimination among 
queens. The presumed role of GP-9 in che- 
moreception suggests that the essential dis- 
tinction in colony queen number between the 
monogyne and polygyne forms may stem 
from differences in workers' abilities to rec- 
ognize queens, differences that are, in turn, 
associated with the characteristic worker 
Gp-9 genotype compositions distinguishing 
the forms. 

Sequence analysis of mRNA transcripts 
from five queens of each social form collect- 
ed in northern Georgia, United States, re- 
vealed the presence of two distinct transcripts 
corresponding to the two alleles detected by 
SGPE (17). Both transcripts were isolated 
from all polygyne queens, which were typed 
by SGPE as Gp_9Bh heterozygotes (18), 
whereas only one of the transcripts occurred 
in monogyne queens, which were typed as 
Gp-9BB homozygotes. The association of 
each transcript sequence with each SGPE- 
determined Gp-9 allele was confirmed by 
identifying the charge-changing amino acid 
substitution responsible for the different elec- 
trophoretic mobilities of the allelic proteins: 
The acidic glutamic acid residue at position 
151 in the B allele product is replaced by a 
basic lysine residue in the b allele product 
(Fig. 1C), causing a decreased net negative 
charge in the latter protein and its observed 
lower mobility. The two Gp-9 alleles differ 
by nine nucleotide substitutions in the coding 
regions, all of which are associated with the 
eight amino acid differences (one synony- 
mous substitution occurs in the codon of a 
nonconserved residue) (Fig. 1C). This appar- 
ent high ratio of nonsynonymous to synony- 
mous substitutions suggests that positive se- 
lection has driven the divergence of these 
alleles (see formal analyses below), consis- 
tent with behavioral studies implicating 
strong diversifying selection on Gp-9 in the 
alternate social forms (5, 7, 16). 

We assessed the diversity of Gp-9 alleles 
in the introduced range of S. invicta in the 
United States by sequencing the gene in 16 
individuals from four localities (California, 
Texas, Georgia, and Florida). Two individu- 
als of each social form were analyzed from 
each locality (19). The sequenced fragments 
were amplified from genomic DNA (20) and 
contained the complete gene plus the 3' 
flanking region, encompassing 2200 bp. We 
confirmed the existence of the same two cod- 
ing region variants detected from the mRNA 
transcripts, and again these corresponded per- 
fectly with the SGPE-determined B and b 

alleles. All polygyne queens had both alleles 
(18), whereas all monogyne queens had only 
the B allele, confirming the link between 
nucleotide-sequence genotype, SGPE geno- 
type, and social form throughout the intro- 
duced range. Little additional nucleotide vari- 
ation was detected over the 1740 bp of non- 
coding sequence (21). 

Previous protein electrophoretic studies of 
S. invicta from the native range in Argentina 
suggest a more complex relationship between 
Gp-9 genotype and social form than occurs in 
the introduced range (5). Although the b al- 
lele is found only in the polygyne form in 
both ranges, some polygyne nests in Argen- 

A 

tina contain egg-laying queens scored by 
SGPE as BB homozygotes, whereas only Bb 
queens occur in polygyne nests in the United 
States. This difference has been hypothesized 
to result from the presence in native polygyne 
ants of a "cryptic," functionally b-like allele 
that encodes a protein bearing the net charge 
of, and thus electrophoretically indistinguish- 
able from, a B allele product (22). We tested 
this hypothesis by sequencing Gp-9 in two 
monogyne queens scored by SGPE as BB 
homozygotes, two polygyne queens scored 
by SGPE as Bb heterozygotes, and two poly- 
gyne queens scored by SGPE as BB homozy- 
gotes, all from Argentina (19). The sequence 
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Fig. 1. Structure and sequences of Gp-9 in fire ants. (A) Intron/exon structure of Gp-9. The signal 
sequence is shaded purple, and the remaining coding regions are shaded blue. (B) Structure of GP-9 
precursor protein. The signal peptide is shaded purple, and the six cysteine residues characteristic 
of pheromone-binding proteins (PBPs) are shown in red. nt, nucleotide; aa, amino acid. (C) Coding 
region nucleotide and amino acid sequences (38) for the B and b alleles from S. invicta in the 
introduced range. The signal peptide is shaded light gray, and the six cysteine residues character- 
izing PBPs are enclosed in rectangles. Nucleotides that differ between the alleles are shown in 
white. The charge-changing amino acid substitution responsible for the different electrophoretic 
mobilities of the allelic proteins is indicated by an arrowhead. 
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data confirmed that the monogyne queens 
had only allele B and that each polygyne Bb 
queen had both the B and b alleles (23). The 
polygyne queens scored electrophoretically 
as BB homozygotes in fact carried two al- 
leles-one a B allele (Sinv.Bl) and the other 
a unique allele, designated Sinv.b', that is 
more similar to b alleles than B alleles over 
its coding sequence (98.0% and 96.1% amino 
acid identity, respectively) yet bears the same 
charge-conferring amino acid as the B alleles 
at position 151 (Fig. 2) (24). These findings 
were verified by analyzing six additional 
queens of each of the three types with a 
polymerase chain reaction/restriction frag- 
ment length polymorphism (PCR/RFLP) as- 
say (25) in concert with SGPE. Confirmation 
of the existence of the cryptic b-like allele 
Sinv.b' in native polygyne queens constitutes 
powerful additional evidence that Gp-9 is 
involved in the regulation of social organiza- 
tion in S. invicta. 

We next attempted to sequence Gp-9 in 
nine other native Solenopsis species, as well 
as in a species of the related myrmicine genus 
Monomorium, to establish the taxonomic 
range over which a homolog occurs (26). We 
were able to amplify and sequence the entire 
2200-bp region in each of the Solenopsis fire 
ant species examined, but in the Solenopsis 
thief ant species chosen, we were able to 
sequence the gene only by using a reverse 
primer that anneals immediately downstream 
of the stop codon (27). Every predicted ami- 
no acid sequence from these other species 
featured a glutamic acid at position 151 (e.g., 
Fig. 3), consistent with the identical electro- 
phoretic mobilities of these proteins and the 
product of the B alleles of S. invicta and 
suggesting a single recent origin of the 
charge-changing substitution in the b alleles 
of S. invicta. We were unable to amplify 
Gp-9 in the Monomorium specimen, suggest- 
ing that a homolog in this ant, if it exists, has 
undergone extensive sequence divergence at 
potential primer binding sites. 

We used the sequence data from the dif- 
ferent Solenopsis species to reconstruct the 
evolutionary relationships of the Gp-9 vari- 
ants (Fig. 4). The fire ant sequences form a 
monophyletic group highly divergent from 
the thief ant sequence, the native North 
American fire ant sequences form a sister 
clade to the South American sequences, and 
the S. interrupta and S. saevissima sequences 
are basal within the South American fire ant 
clade, findings consistent with the classifica- 
tion of these ants (28) and with results from 
mitochondrial DNA sequence analyses (29). 
Most Gp-9 sequences from the South Amer- 
ican fire ants known to display polymorphism 
in social organization form sister clades, one 
containing the close relatives of the polygy- 
ny-inducing b alleles of S. invicta and the 
other containing the close relatives of the B 
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Fig. 3. Coding region nucleotide and amino acid variation for the alleles of Gp-9 in the socially 
polymorphic fire ant species. Alleles are indicated by the name of the species in which they are 
found (black lettering), followed by the formal allele designations (red lettering). The charge- 
changing amino acid substitution in the b alleles of S. invicta is indicated by a black arrowhead. The 
amino acids distinguishing all b-like from all B-like allele products are indicated by red arrowheads. 

alleles of S. invicta. As expected if alleles in 
the b-like clade induce polygyny, confirmed 
polygyne nests of S. richteri, S. quinquecus- 
pis, and S. macdonaghi invariably contained 
individuals with these alleles (26). The B-like 
allele of S. richteri is the sister sequence to all 
other B-like and b-like alleles, suggesting that 
the ancestral Gp-9 allele for the socially poly- 
morphic clade was of the B type and, hence, 
that monogyne social organization preceded 
polygyny in the evolutionary history of South 
American fire ants (S. interrupta and S. sae- 
vissima are not known to exhibit polygyny, 
consistent with their possession of ancestral 
B-like alleles). The implied single origin of 
b-like alleles in these ants apparently predat- 
ed the origins of most of the species, suggest- 
ing that the expression of polygyny in each 
was made possible by survival of the descen- 
dants of an ancestral b-like allele through 
sequential speciation events. 

The availability of a gene phylogeny for 
Gp-9 makes possible formal tests for the 
presence of selection during the evolutionary 
history of this gene. In particular, we wished 
to test the hypothesis that the b-like alleles, 
presumably integral to the polygyne social 
system of each species, are under different 
selective regimes than the B-like alleles, 
which must function in both social systems, 

with positive selection on b-like alleles in the 
polygyne environment having been instru- 
mental in the divergence of the two allele 
types [e.g., (5, 7, 16)]. We inferred the an- 
cestral nucleotide sequences for relevant in- 
terior nodes of the phylogeny (30) and exam- 
ined all branches for evidence of selection by 
testing for differences in substitution rates 
between nonsynonymous and synonymous 
sites (31-33). As hypothesized, positive se- 
lection, signified by excess nonsynonymous 
substitutions, is statistically detectable only 
on branches within the b-like clade (Fisher's 
exact test, all P < 0.05), including the stem 
lineage of the clade and the S. invicta lineage 
that acquired the charge-changing lysine at 
position 151 (Fig. 4). Despite positive selec- 
tion having acted periodically on various b- 
like alleles to drive their divergence from 
their B-like counterparts, all b-like alleles 
uniquely share the three amino acids G42, 195, 
and 1139 (Fig. 3), suggesting that one or more 
of these is essential to the functional role of 
the gene product in inducing polygyny. 

This study identifies a single gene with 
major effects on the regulation of complex 
social behavior. Analyses of Gp-9 sequences 
from multiple Solenopsis species suggest that 
this genetic basis to social polymorphism is 
conserved in South American fire ants and 
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Fig. 4. Cladogram depicting the phylogenetic relationships of 18 Gp-9 alleles found in 10 Solenopsis 
species (branch lengths reflecting uncorrected sequence divergence are shown in inset) (39). Each 
allele is indicated by the name of the species in which it is found (black lettering), followed by the 
allele designation (red lettering) in the case of the socially polymorphic South American fire ant 
species with multiple alleles. Alleles from native North American fire ant species are indicated by 
maroon branches, and those from South American species are indicated by blue branches. Alleles 
invariably associated with polygyny (b-like alleles) have branches highlighted with yellow back- 
ground, and those known or assumed to be fixed in the monogyne forms (B-like alleles) have 
branches highlighted with green background. Branches for which episodes of positive selection were 
detected are indicated by red arrowheads; the branch on which the charge-changing amino acid 
was acquired is shown by an asterisk. Support for nodes obtained from 1000 bootstrap character 
resamplings is indicated for groups that appeared in >-50% of the bootstrap trees (expressed as 
percentages). The consistency index for the tree is 0.922, the retention index is 0.821, and the 
homoplasy index is 0.078. 

implicate positive selection as driving the 
divergence between the b-like alleles associ- 
ated with polygyny and the alternate, B-like 
alleles common to both social forms. The 
product of Gp-9 is a protein predicted to be a 
key molecular component in chemical recog- 
nition of conspecifics, making it likely that 
variation in Gp-9 genotypes between the so- 
cial forms leads to different abilities of work- 
ers to recognize and discriminate among po- 
tential egg-laying queens in a colony, the 
proximate behavioral mechanism by which 
queen number and social organization are 
regulated in fire ants. Nonetheless, given the 
diversity of phenotypic effects associated 
with Gp-9 genotype and the likelihood that 
Gp-9 occurs in a genomic region with re- 
duced recombination (5, 22), other genes of 
large effect in gametic disequilibrium with 
Gp-9 may also be involved in regulating so- 
cial organization. Future studies of the gene 
content of this region, combined with bio- 
chemical analyses of the gene products and 
phylogenetic analyses of the gene sequences, 
promise to yield insights into the genetic 
basis of social evolution while providing an 
integrative paradigm for studies of complex 
sociality. 
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Because there is a theoretical possibility that the British national sheep flock 
is infected with bovine spongiform encephalopathy (BSE), we examined the 
extent of a putative epidemic. An age cohort analysis based on numbers of 
infected cattle, dose responses of cattle and sheep to BSE, levels of exposure 
to infected feed, and number of BSE-susceptible sheep in the United Kingdom 
showed that at the putative epidemic peak in 1990, the number of cases of 
BSE-infected sheep would have ranged from fewer than 10 to about 1500. The 
model predicts that fewer than 20 clinical cases of BSE in sheep would be 
expected in 2001 if maternal transmission occurred at a rate of 10%. Although 
there are large uncertainties in the parameter estimates, all indications are that 
current prevalence is low; however, a simple model of flock-to-flock BSE trans- 
mission shows that horizontal transmission, if it has occurred, could eventually 
cause a large epidemic. 
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BSE in the United Kingdom was spread 
through feed containing meat and bone meal 
(mbm) contaminated with BSE-infected animal 
material (1). Sheep in the United Kingdom 
were also fed mbm, and it is known that sheep 
can be infected with BSE by the oral route (2). 
No field cases of sheep BSE have been ob- 
served, but it has been a concern for a number 
of years (3), and the Food Standards Agency of 
the UK government has recently demanded a 
comprehensive search for it (4), in part because 
sheep are the natural hosts of scrapie, a trans- 
missible spongiform encephalopathy (TSE) 
that has clinical signs indistinguishable from 
BSE. If BSE is masquerading as scrapie in the 
national flock, two independent estimates show 
that the current number of BSE cases (i.e., 
sheep that live long enough to show signs of 
infection) in sheep is likely to be few. First, an 
extensive survey of UK flocks found no indi- 
cation of an increase in scrapie incidence during 
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can be infected with BSE by the oral route (2). 
No field cases of sheep BSE have been ob- 
served, but it has been a concern for a number 
of years (3), and the Food Standards Agency of 
the UK government has recently demanded a 
comprehensive search for it (4), in part because 
sheep are the natural hosts of scrapie, a trans- 
missible spongiform encephalopathy (TSE) 
that has clinical signs indistinguishable from 
BSE. If BSE is masquerading as scrapie in the 
national flock, two independent estimates show 
that the current number of BSE cases (i.e., 
sheep that live long enough to show signs of 
infection) in sheep is likely to be few. First, an 
extensive survey of UK flocks found no indi- 
cation of an increase in scrapie incidence during 
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the height of the cattle BSE epidemic (5, 6). 
The sensitivity of this study implies that fewer 
than 200 flocks could have been acquiring a 
case of BSE per year at the peak. Second, in the 
late 1990s, of 156 brains taken from sheep 
purported to be infected with scrapie, none 
contained BSE, indicating that between 0 and 
100 or at most 2% of yearly scrapie cases were 
actually BSE at that time (4). 

Using a simple age cohort analysis, we ex- 
amined the extent of a putative epidemic of 
BSE in British sheep and compared our results 
with these estimates. Our calculations are based 
on the cattle infection rate, the dose responses 
of cattle and sheep, their relative yearly con- 
sumption of mbm, and estimates of the number 
of BSE-susceptible sheep obtained from a sur- 
vey of sheep PrP genotypes (7, 8). In the year of 
the epidemic peak, the number of cases of 
BSE-infected sheep calculated is consistent 
with both of the existing estimates. Should there 
be horizontal transmission of BSE from sheep 
to sheep, a model of flock-to-flock BSE trans- 
mission shows that even if current cases are 
few, such an epidemic could be in its very early 
stages and a substantial epidemic in the future 
cannot be ruled out. 

The susceptibility of sheep to BSE is strong- 
ly associated with the encoding of glutamine 
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