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Independent and Redundant 
lnformation in Nearby Cortical 

Neurons 
Daniel S. Reich,'sZ* Ferenc ~echler,' Jonathan D. VictorZ 

In the primary visual cortex (VI), nearby neurons are tuned to similar stimulus 
features, and, depending on the manner and time scale over which neuronal 
signals are analyzed, the resulting redundancy may mitigate deleterious effects 
of response variability. We estimated information rates in the short-time scale 
responses of clusters of up to six simultaneously recorded nearby neurons in 
monkey V1. Responses were almost independent if we kept track of which 
neuron fired each spike but were redundant if we summed responses over the 
cluster. Redundancy was independent of cluster size. Summing neuronal re- 
sponses to reduce variability discards potentially useful information, and the 
discarded information increases with cluster size. 

How do neurons in the sensory cortex work 
together to represent a stimulus? Cortical neu- 
rons with similar stimulus selectivities are 
found in close proximity to one another (1-3). 
This might reflect a mechanism of coping with 
large trial-to-trial variability in the responses of 
individual neurons: Downstream neurons could 
simply sum the activities of many neurons with 
similar sensitivities. However, because re-
sponse variability is correlated across neurons 
(4, 5), the ability of averaging to increase the 
signal to noise ratio is limited (6). Also, the fact 
that responses are variable does not imply that 
the cortex averages signals from multiple neu- 
rons, because averaging would ignore stimulus- 
related information encoded into which neuron 
fires each spike. Theoretical (7) and experimen- 
tal (8,9)work has shown that neurons tuned to 
similar stimuli can convey largely independent 
information, especially when their responses 
are noisy. 

Figure 1 describes two pairs of nearby V1 
neurons that illustrate the range of behavior we 
encountered (10). The first pair (Fig. 1, A to D) 
responded robustly to the stimulus, as shown by 
the sharp and reliable firing rate fluctuations 
during typical 1-s segments (Fig. 1A). Al- 
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though the neurons occasionally responded to 
similar stimulus features (double-headed ar- 
row), their responses were usually distinct (sin- 
gle-headed arrow). Overlapping "off" subre-
gions were evident in snapshots of the spatial 
receptive fields (Fig. lB), obtained by cross- 
correlating the stimulus with the spike train 
(10). The "on" subregions, however, were on 
opposite flanks, indicating that the neurons con- 
veyed at least some distinct spatiotemporal in- 
formation. The second pair (Fig. 1, E to H) 
responded less robustly and more variably, and 
the spatial overlap was more complete. 

The Pearson correlation coefficient is a 
measure of similarity between paired re-
sponses. We distinguished between signal 
correlations, which compare bin-by-bin av- 
erage spike counts across trials, and noise 
correlations, which compare trial-by-trial 
deviations from the average response in 
each bin (8) . The signals were essentially 
uncorrelated for the first pair [correlation 
coefficient (r) = -0.0211 but highly corre- 
lated for the second (r  = 0.52). The noise 
was uncorrelated for both pairs ( r  = 
-0.039 and -0.015, respectively). 

Information rates were substantially higher 
for the fust pair than for the second (Fig. 1, C 
and G) (11). To assess population coding, we 
compared two schemes: the summed-population 
code, which did not consider which neuron fired 
each spike, and the labeled-line code, which did 
(12). The summed-population information rate 
for the fust pair was slightly higher than the 
information rate for the first cell alone, but the 
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labeled-line information rate was 49% higher 
than the summed-population mformation rate. 
For the second pair, the difference between the 
summed-population and labeled-line informa- 
tion rates was only 5.6%. Ignoring which neu- 
ron fued each spike blurred distinctions between 
the responses of the fust pair, resulting in a 
reduced multineuronal lnformation rate. For the 
second pair, responses were more similar, and 
neuronal identity mattered less. 

For each pair of neurons and code, we cal- 
culated a redundancy index as a normalized 
measure for comparing recording sites with 
vastly different mformation rates (13). The re- 
dundancy index was 0 when neurons carried 
independent information and 1 when the infor- 
mation was completely redundant. Figure 1, D 
and H, shows that, for both pairs, the redundan- 
cy index was higher for the summed-population 
code than for the labeled-line code. The differ- 
ence was greater for the fust pair, in which the 
responses were robust and distinct, so that com- 
bining spikes from those two neurons blurred 
distinctions and emphasized redundancy. The 
labeled-line code revealed the underlying inde- 
pendence of the responses and yielded a redun- 
dancy index of essentially 0. For the second 
pair, redundancy indices for both codes were 
near 0, meaning that the responses were almost 
independent, even for the summed-population 
code. This surprised us at first because the neu- 
rons responded to similar stimulus elements, 
and we gained little information when we paid 
attention to which neuron fued each spike. 
However, both signal and noise contributed to 
information rates, and when signals were small 
and correlated, and noise large and uncorrelated, 
information in the summed-population code was 
nonredundant. 

We evaluated signal and noise correla- 
tions at a series of bin sizes for all pairs of 
neurons in our database (Fig. 2). Correlations 
were generally positive, but signal correla- 
tions were higher on all time scales. On short 
time scales, noise correlations clustered tight- 
ly about 0, whereas signal correlations were 
more widely distributed with positive median 
values <0.25. On longer time scales, median 
correlations reached higher levels for signal 
(-0.5) than for noise (-0.25). On long time 
scales, our results correspond approximately 
to other monkey visual cortex studies that 
used different stimuli and analyses (3, 8, 14). 

Information rates and redundancy indices 
can be calculated for any cluster size, not just 
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pairs, and characterize the whole population. 
Figure 3 presents results from clusters of up to 
six simultaneously recorded nearby neurons. 
Scatter plots of information rates (top row) re- 
veal that higher information rates were always 
obtained with the labeled-lime code than with the 
summed-population code. The information rates 
for both codes monotonically increased with 
cluster size, without saturating, and were strong- 
ly correlated at all cluster sizes. Ignoring neuron 
identity led to a progressively larger loss of 
information with larger clusters. Although clus- 
ters with more than six neurons were not con- 
sidered here, the trend suggests that the modest 

codes. However, even with the summed-popu- 
lation code, redundancy indices were substan- 
tially smaller than 1, because noise tended to be 
independent across neurons (as exemplified by 
the second pair in Fig. 1). We found no syner- 
gistic coding in the responses to checkerboard 
stimuli. 

Figure 4A shows the number of distinct 
sites at which clusters of each size were 
recorded; within each group, all subsets 
(pairs, triplets, etc.) were analyzed. Median 
information rates for the labeled-line code 
approximated those in the separate sum at all 
cluster sizes (Fig. 4B). The summed-popula- 

difference observed for pairs becomes much tion code transmitted progressively less infor- 
larger even for small populations. mation, which was noticeable even with trip- 

The labeled-line redundancy indices were lets. The median redundancy was nearly in- 
always smaller (bottom row) than were the dependent of cluster size for both codes, and 
summed-population indices, meaning that un- the labeled-line code was significantly less 
der this code, nearby neurons were nearly in- redundant than the summed-population code 
dependent. The redundancy index comparison (redundancy index -0.1 versus -0.4) (Fig. 
highlights the difference between the two 4C). Because of the positive redundancy in- 

Cell 2 400, - I - 11 D 

arc-rnin 

Fig. 1. Responses of two pain of neurons in macaque V1. (A and E) Firing-rate histograms (3.7-ms bins 
aligned with raster diagrams depicting spike times fired during I-s segments of each trial (B and F 
Contour-map snapshots of each neuron's receptive field averaged over a selected 14.8-ms time window 
(78). Dark regions signify areas in which dark stimuli were exstatow and bright stimuli were inhibitory, 
and lieht reeions sienifv the reverse. Time windows [chosen near the ~eak  res~onse) were as follows: 161 
44 to59 &, (F) 74 tb 89 ms. Grayscale represents the change frdm backgrounb firing rate: (B) &S 
spikesls, (F) 20.4 spikesls. (C and C) Information rates for each neuron alone, the separate sum, and each 
multineuron code (summed population and labeled line). (D and H) Redundancy indices for summed- 
population and labeled-line codes. Vertical axis scales for the firing- and information-rate plots are 
fivefold greater for the first pair than for the second pair. 

dices (even for the labeled-line code), treating 
large clusters of neurons as if they were fully 
independent would overstate the amount of 
information conveyed. 

Because information is logarithmic, and 
because the redundancy index was indepen- 
dent of cluster size, the difference in the 
number of stimuli that could be discriminated 
with each code increased exponentially with 
cluster size. Our rich dynamic stimulus made 
information saturation due to limited stimulus 
sets less likely than in previous studies (15), 
and we found no evidence of saturation with 
up to six neurons. 

In the retina, pairs of nearby ganglion cells 
convey independent information (P), which 
suggests that the retinal code can be understood 
by treating each cell as an independent encoder. 
This seems advantageous, because ganglion 
cells are a wiring bottleneck in the visual sys- 
tem. V1 may not be under a similar constraint, 
and the near independence of nearby V1 neu- 
rons most likely arises from other principles. 
Because complex wiring induces considerable 
signal mixing, independence in the retina need 
not persist in V1. 

In V1, nearby neurons share many but not 
all response properties (3). Our experiments did 
not identify the ways in which particular stirn- 
ulus athibutes are encoded by nearby neurons 
but did reveal that, whereas information con- 
veyed on time scales <15 ms is largely inde- 
pendent, responses are 30 to 50% correlated on 

bin size (ms) 

Fig. 2. Distribution of (A) signal and (B) noise 
correlations across 274 neuron pairs, paramet- 
ric in bin size (ms). Box plots show medians and 
quartiles, notches are estimates of uncertainty 
in the medians, whiskers delineate 1.5 times 
the interquartile range, and + signs represent 
outliers. 
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2 neurons 3 neurons 4 neurons 5 neurons 6 neurons 

Fig. 3. lnformation rates (top) and redundancy indices (bottom) for the summed-population 
(horizontal axis) and labeled-line (vertical axis) codes for clusters of two to  six neurons. Each point 
represents a different neuron cluster. Neurons could participate in several clusters of identical and 
different sizes, depending on the number of neurons isolated at that site. 

# of neurons in cluster 

Fig. 4. (A) Distribution of the number of unique 
sites for clusters of different sizes. (B)Median 
information rates versus cluster size for the 
summed-population (square) and labeled-line 
(circle) codes and for the separate sum (trian- 
gle). Medians were first calculated at each re- 
cording site, and then grand medians were cal- 
culated across recording sites. (C) Median re- 
dundancy indices versus cluster size for the 
summed-population (square) and labeled-line 
(circle) codes. Error bars are 95% confidence 
limits on the medians and were derived from 
1000 bootstrap resamplings. 

time scales >60 ms. Whether the short-time 
scale information concerns stimulus attributes 
(such as spatial phase) for which preferences 

are not shared by nearby neurons remains to be 
determined. 

Our results suggest that keeping track of 
which neuron fires each spike preserves a con- 
siderable amount of information already present 
in the responses. Th~s  strategy removes some 
redundancy across neurons with similar tuning 
properties, and it prevents an even greater infor- 
mation loss from summing responses of neurons 
with different selectivities. 1 talso requires re- 
sources devoted to keeping track of disparate 
inputs, a tradeoff that might be costly. Although 
our experiments did not address mechanisms of 
information decoding in cortical networks, the 
existence of a complex dendritic machinery for 
processing synaptic inputs (16,17)suggests that 
codes that use information available in the la- 
beled-line code are plausible. 
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