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In doubly connected superconductors, such as hollow cylinders, the fluxoid is 
known t o  be quantized, allowing the superfluid velocity t o  be controlled by an 
applied magnetic flux and the sample size. The sample-size-induced increase 
in  superfluid velocity has been predicted t o  lead t o  the destruction of super- 
conductivity around half-integer flux quanta. We report transport measure- 
ments in  ultrathin A1 and Auo,,lno,, cylinders verifying the presence of this 
destructive regime characterized by the loss of the global phase coherence and 
reveal a phase diagram featuring disconnected phase coherent regions, as 
opposed t o  the single region seen i n  larger superconducting cylinders studied 
previously. 

Recent advances in nanoscience have dem- superconducting sample. The fluxoid, @', 
onstrated that fundamentally new physical is defined by 
phenomena may be found when the size of 

@' = @ + (rn*cle*)$,v,. ds (1)samples shrinks. In the area of superconduc- 
tivity, the reduction of sample size has led to where @ = J H dS = $, A .  ds is the 

Landau equation leads to (5, 12) 

cos(2n g)= cos(2n $1 (3 )  

where <(q= <(O)[T,/(T, - T)I1l2.Therefore, 
when d < <(0), for @ given by 

( X - Q ,  - A@)12 < @ < (k@, + A@)/2 (4) 
where k is an odd integer and A@ = [l -
dl<(O)]@,, Eq. 3 does not have a solution, mak- 
ing superconductivity not possible even at T = 

0. The superconducting-normal (S-N) phase 
boundary, derived from Eq. 3, is given by 

This destruction of superconductivity at zero 
temperature is directly related to the sample- 
size-induced increase in vS in a doubly con- 
nected superconductor. W i t h  the Ginzburg- 
Landau free energy, the kinetic energy density 
of the supercurrent, 1/2n,*rn*vz (where n,* is 
the number density of the Cooper pairs), can be 
compared with the superconducting condensa- 
tion energy density in an applied field, HC2/8n 
+ P I 8 n  = nS* fi2/4rn*<2(T)+ P 1 8 n  (where 
Hc is the thermodynamic critical field and H i s  
the applied field). Equation 2 suggests that the 
doubly connected sample geometry demands 

the observation of the paramagnetic Meissner ordinary magnetic flux, m* and e* are the 
effect in micrometer-size superconductors effective mass and charge of the Cooper 
(I), the quantization of the Bose condensate pairs, respectively, v, is the tangential super- 
in submicrometer samples (2), and ultimately fluid velocity, and C is a closed contour in the 
the suppression of superconductivity in nano- superconductor. If C is deep in a (bulk) su- 
meter-scale superconductors (3, 4). In this perconductor, v, vanishes so that @' = @. 
regime, it has also been recognized that the For a cylinder with an insulating or hol- 
sample topology has particularly strong ef- low core, if the wall thickness is smaller than 
fects on superconductivity (5), as reflected in the superconducting penetration depth, then 
the characteristic features of the phase dia- v, is uniform in the sample (10). In this case, 
grams for a filled square and a loop (6) . The because of fluxoid quantization, for a given 
same result is expected for any samples of flux @, 
singly and doubly connected geometry, topo- 
logical terms for objects free of or possessing 

vS=(2film*d)(n -@I@,) (2) 

a hole, respectively. where fi = h/2n, d is the cylinder diameter, 
In the mixed state, a magnetic field can and n is an integer that minimizes vS, leading 

penetrate the interior of a superconductor in to the Little-Parks effect (11), characterized 
quantized vortex lines, with supercurrents by a small oscillation in vs that results in an 
circulating around the vortex core. One oscillation in the superconducting transition 
feature of doubly connected superconduc- temperature (T,) and the sample resistance in 
tors (independent of the sample size) is that the transition regime, with a period of @,. 
the circulating Cooper pairs lead to the It was pointed out that a consequence of 
quantization of the fluxoid (7, 8) ,  rather fluxoid quantization in ultrasmall supercon- 
than the vortex, in units of @, = h/2e (in SI ductors, within the phenomenological Gin-
units), where h is the Planck constant and e zburg-Landau theory, was that for a super- 
is the electron charge, because of the pres- conducting ring with a side arm of length L 
ence of global phase coherence among the and diameter d, two very different physical 
Cooper pairs (9). Global phase coherence, regimes should emerge for different ring di- 
whose presence is indicated by a zero re- ameters (5). For large rings, the conventional 
sistance state, refers to the fact that a mac- Little-Parks effect, with a small oscillation in 
roscopic wave function can be used to de- T,, should be found, and superconductivity 
scribe the motion of all Cooper pairs in a should exist at zero temperature in all mag- 

netic fields up to the critical field. However, 
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that vs increase toward its maximum value of 
vSma = fi/nz*d at half-integer flux quanta, as 
long as global phase coherence is present in the 
sample. Qualitatively, if d is made sufficiently 
small, the kinetic energy would be pushed so 
high (as the flux nears half-integer that 
it would be impossible to compensate this en- 
ergy by the condensation energy, making the 
globally phase coherent superconducting state 
energetically unfavorable. This particular way 
of suppressing superconductivity is fundamen- 
tally different from that by strong disorder or 
Coulomb repulsion (13). 

Experimentally, thls phenomenon is difficult 
to observe. If rings, prepared by e-beam lithog- 
raphy, are used, the condition d < <(0) requires 
the rings to be extremely small in diameter and, 
therefore, linewidth. These types of samples 
typically have short coherence lengths, because 
of the unavoidable disorder introduced by struc- 
tural defects and boundary roughness. For ex- 
ample, <(0) was found to be only 0.1 to 0.2 pm 
in mesoscopic A1 disks, squares, and loops (2, 
6). In comparison, <(0) should be 1.6 pm in 
single crystalline A1 (14). In (6), the effect of 
sample geometry on mesoscopic superconduc- 
tors was experimentally studied. Lndeed, the 
phase diagrak for a singly connected sample 
was found to be substantially different from that 
of a doubly connected loop of the same size 
because of the absence of orbital (vortex) states 
in the latter type of samples. However, the sizes 
of the samples in this previous study [l pm, an 
order of magnitude larger than <(0) = 0.1 pm] 
were too large to reach the regime considered 
theoretically. Ultrathin cylinders, which have 
advantages over the rings for detecting the de- 
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structive regime because these samples can have 
high parallel critical fields and reasonably long 
superconducting coherence lengths, were cho- 
sen for the present study. 

The cylindrical samples (Fig. 1B) were pre- 
pared by depositing A1 or A%,I%, onto an 
insulating quartz filament, as previously de- 
scribed (15, 16). The cylinders were 5 1  mm 
long and as small as 150 nm in diameter, nearly 
an order of magnitude smaller than previously 
studied (7). Electrical transport measurements 
were carried out in a dilution or a 3He refriger- 
ator equipped with a superconducting magnet, 
with base temperatures of 20 mK and 0.3 K, 
respectively. The cylinders were manually 
aligned to be parallel to the magnetic field. The 
cylinder diameters were inferred from the resis- 
tance oscillation period and confirmed by atom- 
ic force microscope measurements. 

The resistance of an Al cylinder (Al-1, d = 
150 nm) is plotted as a hc t ion  of Q, and T 
(Fig. lA), where it is.seen that at low T, the 
sample was superconducting for a substantial 
range of magnetic field below H,,. However, 
the zero sample resistance w& suppressed 
around Q, = +1/2Q,, and +3/2Q,0, resulting in 
narrow resistance peaks. At the lowest temper- 
ature, T = 20 mK, the resistance peaks at Q, = 
+1/2Q,o had a magnitude R - 310 ohms, a 
substantial fraction of the normal-state resis- 
tance R, - 930 ohms, and a width of about 
0.18Q,0, as measured at the onset of nonzero 
resistance. 

The temperature dependence of the sam- 
ple resistance measured in zero and finite 
fields corresponding to integer and half-inte- 
ger flux quanta (Fig. 2A) shows that, at zero 
field, Al-1 became superconducting around 
1.3 K. At 1/2Q,,, its resistance showed a 
broad drop startkg around 1 K, in strong 
contrast with R(T) at Q, = Q,,, where a sharp 
transition to zero resistance was seen at 1 K 
even though the applied field was higher. 
Similar behavior was also observed in an 
ultrathin cylinder of Auo,71no,3 (AuIn-1, d = 
154 nm) (Fig. 2B). For both Al-1 and AuIn-1, 
R(T) at 1/2Q,, leveled off to a substantial 
fraction of R,, showing almost no change 
from 200 mK down to 20 mK. In contrast, the 
temperature dependence of a larger A1 cylin- 
der (Al-2, d = 357 nm) (Fig. 3) displayed a 
conventional T, oscillation with no essential 
difference in the shape of R(T) at integer and 
half-integer flux quanta. 

The systematic behavior observed in all 
samples suggests that a sample with a suffi- 
ciently small diameter may remain nonsuper- 
conducting around half-integer flux quanta 
even at zero temperature. A generic phase dia- 
gram can thus be obtained for ultrasmall, dou- 
bly connected superconducting samples (Fig. 
4), where a normal phase extends deep into the 
region where superconductivity would be ex- 
pected for cylinders of a conventional size. For 
these samples, the well-established phase dia- 
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gram consists of a single superconducting re- 
gion wi$ a slightly modulated phase boundary 
extending up to the parallel critical field, H,, 
(Fig. 3, inset B). This new phase'diagram is 
qualitatively different, featuring disconnected 
phase coherent regions separated by a resistive 
phase. 

To compare our experimental results with 
the theory, it is useful to determine c(0). 
Finite-temperature e(T) can be estimated 

from H,,(T) = fi @d.rrtt(T), where t is the 
film thickness (1 7). Using the onset H,,(T), 
values of e(T) are found to be 161 nm for 
Al-1 (d = 150 nm) at 20 mK, 160 nm for 
AuIn-1 (d = 154 nm) at 20 mK, and 60 nm 
for A1-2 (d = 357 nm) at 0.39 K [t(0) < 60 
nm]. Therefore, we may conclude that d < 
t(O) for both Al-1 and AuIn-1, whereas d > 
c(0) for A1-2 (which is more disordered 
than Al-1), as expected theoretically. 

insulating 
quartz 
tilament 

Fig. 1. (A) Resistance as a function of @ and T for Al-1, an A1 cylinder with diameter d = 150 nm 
and wall thickness t = 30 nm. Even at temperatures much lower than the zero-field Tc (=1.30 K 
at onset), the sample remained normal around @ = +1/2@ and +3/2@,. At T = 20 mK, the 
resistance peak at @ = +1/2@, has a width of A@ = 0.188, and a magnitude of R = 0.33RN, 
where R, (= 930 ohms) is the normal-state resistance. The superconducting coherence length 5(2O 
mK) is about 161 nm, as estimated from the parallel critical field H,,(20 mK) = 2365 G ( ac  = 
2.03@,). Values of resistance were taken every 0.01@, from -2.5@, to +2.5@,, at 20 mK and 
every 100 mK starting from 0.10 K up to 1.30 K. The solid red line connects the data points taken 
at 20 mK. (B) Schematic of the sample configuration. 

Fig. 2. (A) Resistance versus tempera- 
ture at several values of magnetic flux 
for AL-1. Filled and open circles corre- 
spond to resistances taken at integer 
and half-integer flux quanta, respective- 
ly. Whereas sharp transitions to zero 
resistance were observed at integer @,, 
a broad drop characterized the behavior 
at 1/2Q0, where the resistance leveled 
off to a substantial fraction of the nor- 
mal-state resistance at temperatures 
below 200 mK. Lines are used to con- 
nect the data points. (B) Resistance ver- 
sus temperature at several values of 
magnetic flux for Auln-I, a Au,,ln,, 
cylinder with d = 154 nm and t '= 30 
nm. Filled and open circles correspond 
to resistances taken at integer and half- 
integer flux quanta, respectively. The 
resistance at 1/2@, leveled off to about 
0.80RN (R, = 5.64 kiloohms), showing 
almost no change from 200 mK down 
to 20 mK. Lines are used to connect the 
data points. (Inset) R(@) for Auln-I at 
T = 20 mK. For most fields below H,, 
the sample was superconducting, ex- 
cept around @ = +1/2@,, where sharp 
resistance peaks of width A@ = 0.1 @, 
were found. From H,, = 2382 G (@, = 
2.14@,), 5(20 mK) is estimated to be 
160 nm. 
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To fit the experimentally obtained S-N 
phase boundary requires taking into account 
several effects not explicitly considered in the 
theory presented in (5). For example, any mis­
alignment of the cylinder axis with the magnet­
ic field would result in a diamagnetic response 
that leads to a parabolic envelope of the S-N 
phase boundary (10). In addition, the effects of 
finite wall thickness, and the suppression of the 
amplitude of the superconducting order param­
eter by the applied parallel field, become in­
creasingly important in ultrathin cylinders (10). 
A fit to Eq. 5 is attempted by assigning a 
different value of Tc to the n = 0 and n — 1 
region of the phase boundary without consider­
ing these effects in detail, resulting in a surpris­
ingly good fit (Fig. 4) despite the simplification. 

Several questions of fundamental interest 
are raised by these results. A substantial drop in 
R(T) taken at half-integer flux quanta was found 
in Al-1 and, to a lesser extent, in Auln-l. The 
origin of the resistance drop should be related to 
superconductivity. As discussed above, the zero 
temperature finite-resistance state observed in 
the destructive regime only indicates the loss of 

global phase coherence. It might be reasonable 
to ask whether the local pair formation may 
have survived, thereby leading to a novel resis­
tive phase of Cooper pairs. 

It is possible that a finite-resistance state can 
arise from a dynamical switching of the fluxoid 
number in ultrathin cylinders. Switching be­
tween n = 0 and n = 1 states around <£ = 4>Q/2, 
for example, requires vortex motion through the 
cylinder wall, leading to a finite resistance, a 
scenario analogous to the finite resistance 
caused by phase slips in one-dimensional su­
perconducting wires (17). It should be noted, 
however, that the loss of the global phase co­
herence in this system occurs even at T = 0. 
Therefore, quantum phase slips (18) would 
have to be considered to account for the ob­
served resistive state in the current experi­
ment. Alternatively, this may be related to 
the resistive state proposed for supercon­
ductors coupled to a dissipative bath (19). 
More experiments are needed to clarify the 
nature of the zero temperature resistive 
state found in the present experiment. 

What would happen if the diameter of the 

Fig. 3. Resistance versus temperature at 
several values of magnetic flux for Al-2, 
an Al cylinder with d = 357 nm and t = 
30 nm. £(7) is 60 nm at T = 0.39 K, as 
estimated from Hc//. Therefore, at T = 
0, i(0) < 60 nm, and d > £(0). (Inset A) 
fl(4>) at several temperatures. Conven­
tional Little-Parks resistance oscillations 
of period 4>0 = h/2e were present. (In­
set B) Measured <f>-7 phase diagram for 
Al-2. A single superconducting region 
(S), with a phase boundary modulated 
by an oscillation of period 4>0 = h/2e, 
was observed. A resistance value of R = 
400 ohms was used to determine the 
superconducting-normal (S-N) phase 
boundary, Tc(4>). 

600 

Fig. 4. 4>-7 phase diagram for Al-1 (d = 
150 nm). Disconnected superconduct­
ing regions (S) separated by a normal 
resistive phase (N) are found in the zero 
temperature limit. The solid lines are fits 
to theory (see text). A value of R(TC) = 
0.05RN was chosen to determine the 
phase boundary, 7"c(<f>). The temperature 
range (0 to 1.5 K) is much larger than that -© 
shown for Al-2 (1.25 to 1.45 K). 5 
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cylinder were to be made even smaller? In 
particular, what should we expect when the 
circumference becomes smaller than the su­
perconducting coherence length? In this lim­
it, a Ginzburg-Landau equation in a coordi­
nate along the circumference of the cylinder, 
as used in (5), is presumably invalid. A mi­
croscopic theory has not been attempted. Ex­
perimentally, the preparation of doubly con­
nected superconducting samples of dimen­
sions on the nanometer scale challenges the 
existing technologies. In this regard, super­
conducting carbon nanotubes (20) are a 
promising candidate for such studies. 

Singly connected superconducting Al 
disks, in which global phase coherence was 
observed directly in samples of size smaller 
than £(0) (2), have been studied experimen­
tally (7, 2, 6) and theoretically (27, 22). 
However, phenomena in singly connected su­
perconducting wires in a parallel magnetic 
field, in particular those associated with vor­
tex states (27, 22), are yet to be explored. 
Further experiments on these nanoscale su­
perconductors, with or without a doubly con­
nected sample geometry, are clearly desired. 
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