
Bayesian Inference of Phylogeny and 

I ts Impact on Evolutionary Biology 


John P. Huelsenbeck,l* Fredrik Ronquist,' Rasmus Nielren,' Jonathan P. Bollback' 

' 	 As a discipline, phylogenetics is becoming transformed by a flood of molecular data. 1 1  
II These data allow broad questions to be asked about the history of life, but also ,

1 present difficult statistical and computational problems. Bayesian inference of phy- 
logeny brings a new perspective to a number of outstanding issues in evolutionary 
biology, including the analysis of large phylogenetic trees and complex evolutionary 
models and the detection of the footprint of natural selection in DNA sequences. 

The idea that species are related through a 
history of common descent is an old one, 
predating Darwin. Yet the idea provides 

an organizing principle in biology that has pro- 
found importance for a number of fundamental 
questions. These questions range from the ba- 
sic, What is the phylogeny of life?, or the more 
esoteric, How can the association in traits 
caused by a common history be accornrnodat- 
ed?, to the practical, How did a virus spread 
through a population? Today, in fact, any study 
of DNA sequences sampled from different spe- 
cies or from different individuals in a popula- 
tion is likely to start with a phylogenetic anal- 
ysis. The widespread use of phylogenies today 
is largely driven by the fundamental importance 

biologists, and the fact that sophisticated anal- 
yses can now be performed by using fast desk- 
top computers. 

Perhaps the most frustrating aspect of phy- 
logenetic analysis to the uninitiated is the be-
wildering variety of inference methods that 
could be performed and that are actively pro- 
pounded by different experts. This article might 
be misconstrued as describing yet another such 
method-Bayesian inference of phylogeny, a 
method that has only recently found its way to 
the field despite its long tenure in statistics 
(1-3). Although Bayesian inference of phy- 
logeny uses the same models of evolution as 
many other methods of analysis, it represents 
a powerful tool for addressing a number of 

ity of a tree (Fig. 1 ) .  Bayes's theorem 

Pr[Data I Tree] X Pr[Tree]
Pr[Tree I Data] = Pr[Data] 

(where the vertical bar should be read as 
"given") is used to combine the prior proba- 
bility of a phylogeny (Pr[Tree]) with the like- 
lihood (Pr[Data I Tree]) to produce a poste- 
rior probability distribution on trees (Pr[Tree 
I Data]). The posterior probability of a tree 
can be interpreted as the probability that the 
tree is correct. Inferences about the history of 
the group are then based on the posterior 
probability of trees. For example, the tree 
with the highest posterior probability might 
be chosen as the best estimate of phylogeny 
(1). Usually all trees are considered a priori 
equally probable, and the likelihood is calcu- 
lated under one of a number of standard 
Markov models of character evolution. 

The posterior probability, although easy 
to formulate, involves a summation over all 
trees and, for each tree, integration over all 
possible combinations of branch length and 
substitution model parameter values. It is all 
but impossible to do this analytically. Fortu- 
nately, a number of numerical methods are 
available that allow the posterior probability 
of a tree to be approximated, the most useful 
of which is Markov chain Monte Carlo 
[MCMC (4)]. MCMC has revolutionized 
Bayesian inference, with recent applications 
to Bayesian phylogenetic inference (1-3) as 
well as many other problems in evolutionary 
biology (5-7). The basic idea is to construct 
a Markov chain that has as its state space the 
parameters of the statistical model and a sta- 
tionary distribution that is the posterior prob- 
ability distribution of the parameters. For the 
phylogeny problem, the MCMC algorithm 
involves two steps: (i) A new tree is proposed 
by stochastically perturbing the current tree. 
(ii) This tree is then either accepted or reject- 
ed with a probability described by Metropolis 
et al. (8) and Hastings (9). If the new tree is 
accepted, then it is subject to further pertur- 
bation. It turns out that for a properly con- 
structed and adequately run Markov chain, 
the proportion of the time that any tree is 
visited is a valid approximation of the poste- 
rior probability of that tree (10). Although 
MCMC has made analysis of many complex 
models possible, it is not a panacea, as chains 
can fail to converge to the stationary distri- 
bution for a number of reasons (e.g., a poor 

Table 
Problem 

Inferring phylogeny 

Evaluating uncertainty 
in phylogenies 

Detecting selection 

Comparative analyses 

Divergence times 

Testing molecular 
clock 

1. The Bayesian approach to problems in phylogeny. 

Bayesian approach Ref. 

Find tree with maximum posterior probability; evaluate (7-3)

features in common among the sampled trees 


Evaluate clade probabilities; form credible set containing (3, 40) 
trees whose cumulative probability sums to 0.95 

Model substitution process on the codon and calculate (29, 32) 
probability of being in purifying or positively selected 
class; sample substitutions and count number of 
synonymous and nonsynonymous changes 

Perform analysis on many trees, and weight results by 	 ( 4 7 4 3 )  
the probability that each tree is correct 

Use fossils as a calibration. Infer divergence times by (4)
using a strict or relaxed molecular clock 

Calculate Bayes factor for the clock versus no branch (24)
length restrictions 

of phylogenies to questions in biology, the im-
mense quantity of sequence data produced by 
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long-standing, complex questions in evolu- 
tionary biology (Table 1). Here we describe 
Bayesian inference of phylogeny and illus- 
trate applications for infemng large trees, 
detecting natural selection, and choosing 
among models of DNA substitution. 

Bayesian lnference of Phylogeny 
Bayesian inference of phylogeny is based 
on a quantity called the posterior probabil- 
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mechanism for proposing new states or fail- day (13-16). The smallest data set included chains, as shown in Fig. 2. Together the 
ure to run the chain long enough). 106 wingless sequences sampled from in- results of the various diagnostics suggest that 

sects, whereas the largest included 357 atpB the chains converged and that the inferences 
Inferring Large Trees sequences sampled from plants. We assumed from the chains are valid. 
Phylogenetic inference is difficult primari- a general model of DNA substitution in the The Bayesian analyses, run in the course 
ly because of the large number of trees that analyses (17, 18). This model allowed each of a few weeks on a fast desktop com-
may describe the relationships of a group of nucleotide change to have its own rate and puter, were largely concordant with the 
species and the vagaries of the substitution the nucleotide bases to have different fre- parsimony analyses (20). However, the 
process. When rates of DNA substitution quencies. We allowed rates to vary across support for the deeper divergences was 
are high, for example, multiple substitu- sites either by assuming that the rate at a site generally higher in the Bayesian analy-
tions at a site can obscure the history of a is a random variable drawn from a gamma sis. Notably, for the plant atpB data the 
character. In fact, under some branch- distribution or by dividing the sites into f i t ,  Bayesian tree differed in the placement of 
length conditions, phylogenetic methods second, and third codon positions and esti- Ceratophyllurn.Parsimony placed this enus 
may convergeto the wrong tree, a situation in mating their rates of substitution separately. sister to monocots with low support, where-
which the method is said to be inconsistent At least two chains were run for each data set. as the Bayesian analysis placed Cerato-
(11). Phylogenetic methods that explicitly All chains were started from random trees phyllum more basally and in a position 
model the substitution process, thereby cor- (19). that is more congruent with the results 
recting for multiple from another gene 
substitutions, can often (rbcL) (14) and a 
overcome problems of A A A study that included 
statistical inconsisten- 560 species and three 
cy. Unfortunately, the 
most powerlid meth-

genes (21). The 
Bayesian analysis of 

ods (e.g., maximum The prior probability of a tree represents 

i i 
Astragalus was also 

likelihood) can onlybe the probability of the treebefore the similar to the parsi-
observationshave been ma&. Typically,

used On all trees are consideredequally probable, mony analysis, with 
small data sets and a priori. However, other informationcan 8 the exception that the 
many of the faster be used to give some trees more prior support for the Neo-

(e.g., many 
probability (e.g., the taxonomy of the 
group). 

= Astragalus clade was 
distance methods) do more similar to the 
not take full advantage corrected parsimony 
of the information ---, bootstrap propor-
contained in the DNA tions rather than the 
sequences. The likelihood is pmportional to the 8

b 
uncorrected values.

probability of the observations(often 
au alignment of DNA sequences) - The Bayesian analy-

takes a view of the conditionalon the tree.This probabiity 4 sis also provided in-
phylogeny problem quires  making specific assumptions t2 formation on the 
that makes analysis of about the processes generatingthe 

observations. I 
substitution model 

large data sets more parameters (20). The 
tractable: Instead of Tree 1 Tree 2 Tree 3 estimates of the sub-
searching for the opti-
mal tree, one samples 
trees according to their 
posterior probabili-
ties. Once such a 
sample is available, 
features that are 
common among the 
trees can be dis-

The posterior probabilityof a tree is the 
probability of the tree conditionalon the 
bbsewations. It is obtained by combining 
the prior and likelihood for each tree 
using Bayes' formula. 

Tree 1 Tree 2 Tree 3 

stitution rates were 
typically higher than 
the corresponding 
parsimony estimate; 
this is necessarily 
true as the parsi-
mony method mini-
mizes the number of 
changes at a site and 

cerned. For example, must underestimate 
the sample can be Fig. 1.The main components of a ~ayesiananalysis. the total number of 
used to construct a 
consensus tree, with the posterior probabil-
ity of the individual clades indicated on the 
tree. This is roughly equivalent to perform-
ing a maximum likelihood analysis with 
bootstrap resampling (3), but much faster. 

To illustrate this, we wrote a computer 
program implementingthe MCMC algorithm 
(8,9). In particular, we implementeda variant 
of MCMC called Metropolis-coupledMCMC 
that is less prone to entrapment in local opti-
ma (12). We applied the method to four large 
phylogenetic data sets that span the size range 
of many problems faced by systematists to-

The greatest practical problems associ-
ated with the use of MCMC are determin-
.inghow long to run a chain to obtain a good 
approximation of the posterior probabilities 
of trees and identifying pathological cases 
where the MCMC algorithm fails to con-
verge. We examined a number of diagnos-
tics to check convergence of multiple chains 
[see supplemental material (20)l. Most im-
portant, we checked that inferences made 
from independent chains were indistinguish-
able. The posterior probabilities of individual 
clades are highly correlated for independent 

changes. 

Choosing Appropriate Models 
The results of any phylogenetic analysis, in-
cluding those discussed above, are condition-
al on the assumptions made in the analysis. 
Modeling assumptions that poorly fit the ob-
servations can lead to erroneous inferences. 
For example, a phylogenetic model that as-
sumes equal rates across sites can result in 
inconsistent inferences when rates differ, 
even if all other parameters of the model are 
correct (22). It is important, then, that a care-
ful consideration of alternative models of 
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evolution be made so that the most appropri- 
ate is used in the phylogenetic analysis. 

But how does one go about selecting the 
most appropriate model? In the past de- 
cade, practitioners in phylogenetics have 
become more sophisticated when choosing 
among evolutionary models. A common 
approach uses the likelihood ratio test, with 
the null distribution relying on asymptotic 
theory or computer simulation (23): Like- 
lihood ratio tests, and other similar meth- 
ods, are very useful, but can depend on the 
tree used to perform the test. A number of 
Bayesian approaches can also be used to 
choose among evolutionary models. For ex- 
ample, Bayes factors-comparing the mar- 

1.00. 

of model choice is not feasible here, but we 
will illustrate one method that uses predic- 
tive densities-posterior predictive simula- 
tion (25). 

If an evolutionary model does a good 
job of explaining the observed DNA se- 
quences, then data simulated under that 
model should be similar to the observa- 
tions. Posterior predictive simulation tests 
the adequacy of a model by comparing a 
test statistic with the posterior predictive 
distribution of that statistic generated under 
the assumption that the model is correct. 
The test statistic should measure how well 
a model performs in predicting the obser- 
vations. The posterior predictive distribution 

Fig. 2. Convergence of independent Markov chains. The figures show the posterior probability of a 
clade [or subtree; T(Q] conditional on the observed DNA sequences (X) for two chains, each of which 
started from different random trees. Note that the posterior probabilities of individual clades found 
in different chains [f,(~(;) I X) versus f2(7(;) I X)] is highly correlated, and that there are no instances 
in which a particular clade found with high probability in one .chain is not found in  the other. ALL 
analyses assumed the general time reversible (GTR) model of DNA substitution. Rate variation 
across sites was accommodated by using the gamma (+r) model for the ITS data and the 
site-specific (+SS) model for the protein-coding genes. The analyses included from s = 106 to  s = 
357 sequences that were from c = 378 to  c = 1497 sites in length. 

ginal likelihoods of two models-have 
proven to be useful in choosing among 
evolutionary models (24). One advantage 
of these methods is that the results are not 
conditional on an assumed topology being 
correct. The Markov chain simulation ef- 
fectively treats the topology as a nuisance 
parameter by summing over trees. An ex- 
haustive description of Bayesian methods 

is approximated by simulating new observa- 
tions by using parameter values sampled 
from the posterior distribution of the model 
being scrutinized. Uncertainty in the tree and 
substitution model parameters is accommo- 
dated by sampling from the posterior distri- 
bution. The test statistic for the simulated 
data is then compared with that for the actual 
data. If a model provides a good fit to the 

data, then the original test statistic should fall 
within the central region of the simulated 
distribution. For a poorly fitting model, the 
test statistic will fall outside the tails of the 
predictive distribution. 

We illustrate the use of posterior predic- 
tive simulation for measuring the overall ad- 
equacy of a phylogenetic model in simulation 
and for testing the homogeneity of nucleotide 
frequencies at the Drosophila alcohol dehy- 
drogenase (Adh) locus (26). For the first 
case, we compared a simple model of DNA 
substitution (27) with a more general model 
(1 7) using data simulated under the latter. As 
expected, the inadequacy 'of the simple 
model is revealed (Fig. 3B; p, = 0.008) 
while the more parameter-rich model pro- 
vides a good description of the underlying 
process (Fig. 3A; p, = 0.556). For the 
empirical example involving 58 Adh se- 
quences (26), we use a test statistic that 
measures the general deviation in nucleo- 
tide frequencies among the sequences (28). 
The predictive distribution of this test sta- 
tistic was evaluated by using MCMC (29) 
and compared with the observed value (Fig. 
3C). Because the observed value is well 
outside the predictive distribution, the hy- 
pothesis of constant base frequencies 
among species is easily rejected. Although 
thismethod of inference is in the classical 
tradition of hypothesis testing, the Bayes- 
ian approach adds the ability to deal appro- 
priately with uncertainty in the phylogeny. 

Bayesian Inference of Functional 
Importance in Molecular Evolution 
In studies of the evolution of biological 
molecules and their functions, researchers 
are often interested in substitution patterns. 
Typical questions include the following: (i) 
At what rate do various types of substitu- 
tions occur? (ii) Has the mode of evolution 
changed along the phylogeny? (iii) Which 
parts of the protein are functionally con- 
strained or under positive selection? And 
(iv) is the evolution of amino acid residues 
correlated? The two most common ap- 
proaches to these questions are to infer 
substitutions on a fixed phylogeny by using 
parsimony and to analyze the inferred sub- 
stitutions as if they were real data, or, to 
develop likelihood models that can be com- 
pared by using likelihood ratio tests. 

The parsimony approach has been exten- 
sively used in studies of molecular evolution. 
However, it suffers from the drawback that 
the number of substitutions will be underes- 
timated and that a large part of the statistical 
uncertainty is ignored when concentrating on 
only one possible history of substitutions on 
the phylogeny (29). The approach using like- 
lihood ratio tests has a solid statistical foun- 
dation, but every time a new hypothesis is to 
be tested, a new likelihood model must be 
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T(X) (Multinomial) 

T(X) (Multinomial) 

Fig. 3. The posterior predictive distributions for 
tests of (A) the adequacy of the CTR model, (B) 
of the adequacy of the Jukes-Cantor model, 
and (C) the hypothesis of constant nucleotide 
frequencies over time. The arrows above the 
distributions show the observed value of the 
test statistics. 

implemented. In addition, both methods typ- 
ically assume that the phylogeny is known 
without error. 

Ideally, we would like to study molecular 
evolution by makiig inferences regarding the 
type and distribution of substitutions on the 
phylogeny, while at the same time accommo- 
dating the inherent uncertainty in the tree and 
associated history of substitutions. Consider 
an alignment of DNA sequences involving 
four species in which "A" was observed at a 
site for three of the species and "C" for the 
fourth. One history of substitution that could 
explain these observations involves a single 
change along the branch leading to the C. 
However, there are infinitely many other 
such histories that could ex~lain the observa- 
tions, all involving more changes. The parsi- 
mony approach considers only a single his- 
tory-the history of substitution that involves 
the fewest number of changes. In a Bayesian 
framework one considers many possible his- 
tories of substitution, weighted by their prob- 

S C I E N C E ' S  C O M P A S S  

ability of occurring under a specific model of 
evolution. Character histories c h  be sampled 
in proportion to their probability by using 
simulation (29). Moreover, the uncertainty in 
the tree and model parameters can be ac- 
counted for by sampling trees with MCMC. 

The approach of mapping substitutions on 
a tree can be used to detect positively selected 
residues. Positive selection occurs when nat- 
ural selection increases the frequency of new 
amino acid mutations. Positive selection at 
the molecular level is shown by an increase in 
the rate of nonsynonymous substitution over 
the rate of synonymous substitution. Positive 
selection occurs in many systems (30), but 
particular attention has focused on viral DNA 
sequences. A statistical approach for identi- 
fying sites undergoing positive selection is 
based on first testing for the presence of 
positively selected sites with a likelihood ra- 
tio test, and then, if the test is significant, 
identifying positively selected sites by using 
an empirical Bayes approach (31, 32). Em- 
pirical Bayes approaches differ from other 
Bayesian methods in that the prior distribu- 
tion is determined, in part, by the data. The 
empirical Bayes approach has been useful in 
identifying positively selected residues in a 
number of systems (29,32-34). 

An alternative approach is to use the pos- 
terior distribution of substitutions to examine 
the pattern of nonsynonymous substitutions. 
Of particular interest are amino acid residues 
in which more nonsynonymous substitutions 
occurred than expected under neutrality (i.e., 
equal nonsynonymous and synonymous 
rates). We illustrate this method on a data set 
containing 28 influenza sequences of the 
hemagglutinii gene (35, 31). Hemagglutinin 
is an envelope gene of the virus and is a 
potential target for the host immune system. 
Previous studies based on maximum likeli- 
hood, and other methods, have demonstrated 
that positive selection is acting on this set of 
sequences (31,35,36). To identify positively 
selected sites, we used the posterior expecta- 
tion of the number of nonsynonymous sub- 
stitutions in a site, EM Using MCMC, we 
estimated EM for each site under the hypoth- 
esis that the rate of nonsynonymous substitu- 
tions equals the rate of synonymous substitu- 
tions (37, 38). The predictive distribution of 
Em was also evaluated by using MCMC. 
Seven residues were identified with a value 
of EM, larger than 4 (Fig. 4). All of these 
residues were located in proximity to each 
other on the globular head of the molecule. 
The posterior predictive probability of Em > 
4 in a residue is approximately 0.002 if the 
rate of nonsynonymous substitution equals 
the rate of synonymous substitution. Presum- 
ably these seven sites have increased levels of 
nonsynonymous variation because of positive 
selection. This observation is confirmed by 
the fact that all seven residues are located 

within known antigenic sites, and four. of 
them are located within the very same anti- 
genic site (39). Strong positive selection ap- 
pears to have been occurring in the history of 
these sequences so as to avoid immune rec- 
ognition. Moreover, a majority of the posi- 
tively selected substitutions in the hemagglu- 
tinin gene tends to be conservative amino 
acid changes (37), implying that even though 
there is strong selection pressure for changing 
binding affinities in these sites, some selec- 
tion must also occur in the same sites to 
maintain the structure and function of the 
protein. 

The Future of Bayesian Phylogenetic 
Inference 
There are many reasons to believe that the 
success of Bayesian inference will continue 
as it is applied to a wider range of problems 
in evolutionary biology. These reasons in- 
clude the ease with which complex evolution- 
ary models can be examined, the accommo- 
dation of phylogenetic uncertainty (an advan- 
tage conferred by using MCMC), and the fact 
that the method concentrates attention on the 
evolutionary models. Bayesian analysis 
should also prove useful in addressing some 
of the outstanding problems in phylogenetics, 
such as detecting and accommodating hori- 
zontal gene transfer (a process that compli- 
cates phylogenetic analysis of bacteria), per- 

Fig. 4. The protein structure of the influenza 
hemagglutinin protein, chains A and B. The 
seven positively selected residues are marked in 
red. 
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forming phylogenetic analyses by using 
whole-genome data and understanding the 
evolution of the genome in the context of 
phylogeny, and constructing large trees by 
combining the results of smaller and overlap- 
ping analyses. 
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