
nonhematopoietic tumors although we first 
need to identify the specific growth and 
differentiation factors for such tissues. Fur- 
thermore, we know very little about the 
signals that control self-renewal and prolif- 
eration of pluripotent stem cells (22, 23). 
If, indeed, PTEN controls self-renewal and 
proliferation of neuronal stem cells, then 
this protein could be used to harvest in- 
creased numbers of these cells for research. 
The Groszer et al. findings also provide in- 
sight into how neuronal stem cells remain 
pluripotent. Perhaps stem cell pluripoten- 
tiality could be maintained by expressing 
activated PKBIAKT or other components 
of signaling pathways that are suppressed 
by PTEN. PTEN may also be important for 
maintaining the pluripotentiality of other 
types of stem cells. 

One striking feature of stem cells is 
their ability to self-renew, a property that 
also defines cancer cells. Tumors often 
originate through the transformation of 
stem cells, and it has been postulated that 
stem cell transformation, self-renewal, and 
proliferation may be controlled by the same 

N O T A  B E N E :  B I O M E D I C I N E  

signaling pathways (22). The notion that 
the tumor suppressor PTEN, which is mu- 
tated in many different human tumors, may 
regulate neuronal stem cell renewal and 
proliferation is very exciting. One could 
speculate that loss of PTEN in tumors 
would help them to become pluripotent, al- 
though PTEN loss is often a late event in 
tumor formation (21). The conditional 
PTEN-mutant mice develop macrocephaly 
and perturbed neuronal patterning, so loss 
of PTEN alone is insufficient to drive 
transformation and there must be an addi- 
tional mutational event for brain tumors to 
develop. If this hypothesis is correct, then 
D5 lipid phosphatases such as SHIP1, 
which control proliferation and differentia- 
tion of hematopoietic progenitor cells, 
must also have tumor suppressor activity. 

From a therapeutic standpoint, transient 
inactivation of PTEN could provide a 
booster shot for a rare stem cell population 
needed to treat certain neurodegenerative 
diseases. The caveat is that such an ap- 
proach would have to circumvent the pro- 
cancer consequences of PTEN inactivation 
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in other cell types. If we have indeed found 
our modern Holy Grail, then we must be 
sure that it does not harbor poison. 
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