
coreceptor in conjunction with the TCR. Ad- 
ditionally, by binding to natural killer (NK) 
receptors, class I molecules can modulate NK 
activity (22, 23). Here we describe a third 
pathway by which class I molecules may af- 
fect lymphocyte function, by interacting spe- 
cifically with CD8aa. By binding to TL in- 
dependently of the TCR MHC specificity, 
CD8aa  acts semiautonomously and not as a 
TCR coreceptor. This type of interaction 
may not be exclusive to IELs, as T cells in 
other tissues also can express CD8aa (24, 
25). With the findings presented here, the 
possibility must now be entertained that 
CD8aa  molecules could have a regulatory 
function through high-affinity binding to 
class I molecules. 
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Heterotrimeric GTP-binding proteins (G proteins) control cellular functions by 
transducingsignals from the outside t o  the inside of cells. Regulator of G protein 
signaling (RCS) proteins are key modulators of the amplitude and duration of 
G protein-mediated signaling through their ability t o  serve as guanosine 
triphosphatase-activating proteins (GAPs). We have identified RCS-PXl, a Gas- 
specific CAP. The RCS domain of RGS-PX1 specifically interacted wi th  Ca,, 
accelerated its CTP hydrolysis, and attenuated ~a,-mediated signaling. RGS- 
PX1 also contains a Phox (PX) domain that resembles those in  sorting nexin 
(SNX) proteins. Expression of RGS-PX1 delayed lysosomal degradation of the 
EGF receptor. Because of its bifunctional role as both a GAP and a SNX, RCS-PX1 
may link heterotrimeric G protein signaling and vesicular trafficking. 

Heterotrimeric G proteins relay extracellular 
signals initiated by hormones, neurotransmit- 
ters, chemokines, and sensory stimuli through G 
protein-coupled receptors to intracellular effec- 
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tors and trigger a variety of physiological re- 
sponses (1,2). Receptor activation causes dis- 
sociation of G a  subunits from GPy dimers and 
subsequent regulation of downstream effectors. 
Members of the RGS protein family serve as 
GAPs that attenuate G protein-mediated signal 
transduction by binding to G a  subunits through 
a conserved RGS domain and accelerating GTP 
hydrolysis of Ga subunits (3). 

The RGS proteins characterized to date are 
GAPs for G,, G,, or GI,,,, classes of G proteins, 
but no RGS GAP for Gas has been found. To 
identify RGS proteins that might serve as GAPs 
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for G a ,  we searched sequence databases with 
representative RGS domains from the six 
known mammalian RGS subfamilies and sub-
sequently isolated a cDNA clone encoding a 
957-amino acid protein from a human heart 
cDNA library (4) (Fig. lA), which we named 
RGS-PX1 based on the presence of both an 
RGS domain (Fig. 1B)and a Phox (PX) domain 
(5,6).RGS-PX1 also contains an NI-&-terminal 
hydrophobic region (-36 amino acids), a PX-
associated domain (PXA) of unknown function 
(9,and several coiled-coil regions (Fig. 1A). 

To determine whether RGS-PX1 interacts 
directly with Ga subunits, bovine brain lysates 
were incubated with fusion proteins containing 
glutathione S-transferase (GST) and either the 
RGS domain of RGS-PX1 or RGS4, immobi-
lized on glutathione-agarose beads in the pres-
ence of guanosine diphosphate (GDP) and 
AlF4- (7), which mimicks the transition state of 
Ga. RGS-PX1 specifically bound Gas but not 
Ga,,, Ga,, or Gal, in brain lysates (Fig. 2A), 
whereas RGS4 bound Ga, and Ga, but not Gas 
and Gal, as previously reported (8, 9). The 
specificity of the interaction between RGS-PX1 
and Gas was confirmed by incubating Gas or 
Gailproteins with RGS4 or the RGS domain of 
RGS-PX1 bound to beads in the presence of 
GDP or GDP and AlF4- (10). RGS-PX1 bound 
the GDP-AlF, form of Ga,, whereas RGS4 
bound only thk GDP-AlF4- form of Gail (Fig. 
2B). These data indicate that RGS-PX1 specif-
ically interacts with Gas. 

To test whether RGS-PX1 can function as a 
GAP for Gas, single turnover GTPase assays 
were performed (11,12). RGS-PX1 accelerated 
the catalytic rate of GTP hydrolysis of Gas at 
least 20-fold over that of Gas alone, whereas 
RGS4 had no effect (Fig. 2C). In the absenceof 
RGS-PX1 or in the presence of RGS4 the half 
life (t,,) of GTP hydrolysis by Gas was -5 
min, whereas in the presence of RGS-PX1 it 
was <15 s, the earliest time point (Fig. 2D). 
RGS-PX1 had no effect on Gail, whereas 
RGS4 markedly accelerated the GTP hydroly-
sis of Gail (Fig. 2D). These results demonstrate 
that RGS-PX1 is a GAP for Gas. 

To investigate the effects of RGS-PX1 on 
Gas-mediated signaling, CAMPproduction was 
measured in transfected HEK293 cells express-
ing the P2-adrenergic receptor (P2AR) (13). 
Treatment of cells with the P2AR agonist iso-
proterenol increased the cellular CAMP level. 
This increase was reduced (-70%) in cells ex-
pressing the RGS domain of RGS-PX1 (Fig. 
3A). Additionally, incubation of neonatal rat 
cardiac membranes with the RGS domain of 
RGS-PX1 (13) reduced isoproterenol-stimulat-
ed adenylyl cyclase (AC) activity by, -65% 
(Fig. 3B). No effect was seen on forskolin-
induced CAMPproduction or on AC activation, 
which does not require Gor,. These data are 
consistent with the conclusion that RGS-PX1 
attenuates Gas-mediated signaling by function-
ing as a GAP. 

RGS-PX1 also contains a PX domain fol- examined the effects of overexpressing a fusion 
lowed by a coiled-coil region (Fig. 1A) often protein containing green fluorescence protein 
found in SNX proteins, which are involved in (GFP) and RGS-PX1 (GFP-RGS-PX1) on EGF 
vesicular trafficking (14-17). To determine receptor (EGFR) trafficking (18). Upon ligand 
whether RGS-PX1 can function as a SNX, we stimulation,EGFR is rapidly internalized, sorted 
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Fig. 1. Structure of RCS-PXI. (A) Schematic representation of RCS-PXI. PX, Phox homology 
domain; PXA, PX-associated domain; CC, coiled-coil regions; +, hydrophobic regions. (B) The RCS 
domain of RCS-PX1 is homologous to  those of other RGS proteins (27). Conserved residues are 
shaded in black; similar residues are shaded in gray. The regions containing the alpha helixes (a1 
through a9) found in RCS4 are indicated above the sequences. The Ca ,,-contacting (asterisks) and 
hydrophobic core residues (diamonds) of RGS4 are also indicated. p115, pll5RhoCEF. 
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Fig. 2. RCS-PX1 specifically 
interacts with Ca, and 
stimulates its GTPase activ-
ity. (A) The RCS domain of 
RCS-PX1 and full-length 
RGS4 immobilized on glu-
tathione beads were incu-
bated with bovine brain ly-
sates in the oresence of 

Gai l  
80 

0 1 2 3 4 5 
CDP/AIF,-. ~ o h dproteins 
were analyzed by immunoblottingfor the indicated Ca subunits. (B) RCS domains of RCS-PX1 and 
RCS4 immobilized on Ni-NTA beads were incubated with purified recombinant Ga, (lanes 1 
through 5) or Cai, (lanes 6 through 10) in the presence of CDP/AIF,- (lanes 2,3, 7, and 8)  or CDP 
alone (lanes 4, 5, 9, and 10) and analyzed as in (A). WB, Western blotting. Lanes 1 and 6 were 
loadedwith 0.1 p g  of Ca, or Gail. (C) RCS-PX1 (400 nM, circles) but not RCS4 (400 nM, triangles) 
increases the rate of CTP hydrolysis of Ca, over Gasalone (squares). (D) RCS4 (250 nM, triangles), 
but not RCS-PX1 (800 nM, circles), increases the rate of CTP hydrolysis of Ca,, over Gail alone 
(squares). The hydrolysis reaction contained 80 nM Ca, (C) or 60 nM Gai, (D) and was performed 
on ice. Data shown are representative of at least three independent experiments. 
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in endosomes, and targeted to lysosomes for 
degradation. Ligand-dependent EGFR degrada- 
tion was delayed in transfected HEK293 cells 
expressing GFP-RGS-PX1 (Fig. 4A), which 
suggests inhibition of lysosomal targeting and/ 
or degradation of EGFR Because EGFR traf- 
ficking to endosomes is important for regulating 
receptor signaling, we assessed whether expres- 
sion of GFP-RGS-PX1 influences EGF-depen- 
dent mitogen-activated protein kinase (MAPK) 
activation (18). In controls, phosphorylation of 
ERKl and ERK2 increased 5 min afier EGF 
addition and decreased progressively from 30 to 
60 rnin (Fig. 4B), in keeping with the observed 
rapid degradation of active EGFR (Fig. 4A). In 
contrast, cells transfected with GFP-RGS-PX1 
showed sustained activation of ERKl and 
ERK2 at 30 and 60 rnin (Fig. 4B). This pro- 
longed EGF signaling correlates well with the 
delay in EGFR degradation, supporting a regu- 
latory role for RGS-PX1 in EGFR trafXcking 
and signaling. 

The PX domain has recently been shown to 

RGS-PXI 

e 7.5- 
0 

"." 
Basal 1 pM Iso 10 pM Fsk 

B 
1.510 Control 

1 pM Iso 10 pM Fsk 

Fig. 3. RGS-PX1 attenuates Gas-mediated signal- 
ing. (A) RGS-PX1 inhibits isoproterenol (Iso)- but 
not forskolin (Fsk)-induced CAMP production. 
HEK293 cells were transfected with the RGS do- 
main of RGS-PX1 or with empty vector together 
with P2AR. (B) RGS-PX1 inhibits Iso- but not 
Fsk-stimulated AC activity in neonatal rat cardiac 
myocyte membranes. Membranes were incubat- 
ed for 5 min on ice with 50 nM RGS domain of 
RGS-PX1 or with vehicle before AC activity was 
measured. CAMP production over basal produc- 
tion (no agonist) is shown. Data are expressed as 
the mean ? SEM of three experiments. **P < 
0.005 by paired t test. 

be a phosphoinositide-binding domain involved 
in membrane targeting (1 7,19); and in the case 
of SNX3, the interaction between the PX do- 
main and phosphoinositides is important for its 
function (1 7). To examine its phosphoinositide- 
binding properties, we performed a protein- 
lipid binding assay with a GST hsion protein 
containing the PX domain of RGS-PX1 (18) 
and found that it bound strongly to PtdIns(3)P 
and PtdIns(5)P and weakly to PtdIns(3,5)P2 
and PtdIns(4)P, but not to other phosphoinositi- 
des or other phospholipids (Fig. 4C). 

GFP-RGS-PX1 also colocalized with the 
early endosome marker EEAl in Cos-7 cells 
(18) (Fig. 4D). PtdIns(3)P is highly enriched 
in early endosomes (1 7), whereas the subcel- 
lular localization of PtdIn(5)P has not been 
established. These results suggest that RGS- 
PX1 is a hnctional SNX that could regulate 
EGFR traficking and signaling, probably 
through the interaction of its PX domain with 
phosphoinositides in endosomes. 

As a GAP for Gas, RGS-PX1 likely con- 
tributes to the regulation of cellular responses 
mediated by Gas. Gas stimulates adenylyl cy- 
clases, L-type calcium channels, and Src kinase; 
inhibits cardiac sodium channels; and is in- 
volved in many cellular responses, including 

A 
Control GFP-RGS-PX1 

0 5 30 60 0 5 30 60 EGF (min) 

.m*n).r* 

cell growth, differentiation and proliferation, 
membrane trafficking, cardiac contraction and 
relaxation, hormone secretion, and learning and 
memory (1,2,20). The existence of RGS-PX1 
as a GAP for Gas may explain the difference 
between the slow rate of GTP hydrolysis of 
Gas in vitro and its rapid rate of deactivation 
under certain physiological conditions (21). 
The specificity of the interaction between Ga 
subunits and RGS proteins is very likely deter- 
mined by the primary sequences of RGS do- 
mains and Ga proteins. It has been suggested 
that the major barrier to Gas interaction with 
other RGS proteins is Aspzz9 of Gas (3). Sub- 
stitution of this residue with the corresponding 
SeSo6 of Gai enabled the mutated Gas to bind 
to RGS4 and RGS16. It is known from the 
crystal structure of the Gail-RGS4 complex 
that SeSo6 of Gail interacts with G1ulZ6 and 
AsnLZ8 of RGS4 (3). In RGS-PX1, and 
Thf'59 OCCUPY these positions. These two non- 
conserved amino acid substitutions suggest that 

and ThP59 in RGS-PX1 might contrib- 
ute to the specificity of Gas-RGS interaction. 

A unique feature of RGS-PX1 is its dual 
role as both a GAP and a SNX. Whereas the 
RGS domain of RGS-PX1 is responsible for its 
GAP activity for Gas, the PX domain and the 

C 
Ptdlns 1-1 pc 

- 
Control GFP-RGS-PX1 Ptdlns(4)P 1 ' t Ptdlns(3,4,5)P3 

lanlmell 

D 
GFP-RGS-PX1 EEAI Meraed 

Fig. 4. RGS-PX1 is a functional sorting nexin. (A) Expression of GFP-RGS-PX1 causes a delay in the 
degradation of EGFR in. HEK293 cells. Cells transfected with GFP-RGS-PX1 or with empty GFP 
vector were treated with EGF for the indicated times, followed by immunoblotting with antibodies 
against EGFR or actin. Data shown are representive of at least three independent experiments. (B) 
Expression of GFP-RGS-PX1 in HEK293 cells inhibits down-regulation of EGF-dependent MAPK 
activation. Cells transfected with GFP-RGS-PX1 or with empty GFP vector were treated with EGF 
for the indicated times, and activation of MAPK (phospho-ERK112) was assessed by immunoblot- 
ting. Data shown are representive of at least three independent experiments. (C) The PX domain 
of RGS-PX1 binds strongly to Ptdlns(3)P and Ptdlns(5)P and weakly to Ptdlns(3,5)P2 and Ptdlns(4)P. 
A GST fusion protein containing the PX domain of RGS-PX1 was used in a protein-lipid overlay. 
Bound proteins were detected by immunoblotting with antibody to GST. PA, phosphatidic acid; PC, 
phosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphatidylserine. (D) GFP-RGS-PX1 co- 
localizes with EEAI in Cos7 cells. Right panel, merged images. Yellow indicates overlap. 

ncemag.org SCIENCE VOL 294 30 NOVEMBER 2001 



R E P O R T S 

COOH-terminal coiled-coil region, which are 
shared with other SNX proteins, are most likely 
responsible for its SNX function. The presence 
of both activities in one molecule makes RGS-
PX1 an ideal bridge between G protein signal­
ing and regulation of vesicular trafficking. 
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Saccharomyces cerevisae, Torlp and Tor2p, 
control a wide range of growth-related cellular 
processes, including transcription, translation, 
and reorganization of the actin cytoskeleton (5). 
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The mammalian target of rapamycin (mTOR) governs cell growth and prolif­
eration by mediating the mitogen- and nutrient-dependent signal transduction 
that regulates messenger RNA translation. We identified phosphatidic acid (PA) 
as a critical component of mTOR signaling. In our study, mitogenic stimulation 
of mammalian cells led to a phospholipase D-dependent accumulation of 
cellular PA, which was required for activation of mTOR downstream effectors. 
PA directly interacted with the domain in mTOR that is targeted by rapamycin, 
and this interaction was positively correlated with mTOR's ability to activate 
downstream effectors. The involvement of PA in mTOR signaling reveals an 
important function of this lipid in signal transduction and protein synthesis, as 
well as a direct link between mTOR and mitogens. Furthermore, these studies 
suggest a potential mechanism for the in vivo actions of the immunosuppres­
sant rapamycin. 
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