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ticipate in the autoimmune process. Potential- 
ly, neuronal OPN secretion could modulate 
inflammation and demyelination and could 
influence the clinical severity of the disease. 
Consistent with this idea, a role for neurons in 
the pathophysiology of MS and EAE has 
recently been described (21,22), and neurons 
are known to be capable of cytokine produc- 
tion (35, 36). OPN inhibits cell lysis ( 6 ) ,and 
thus, neuronal OPN might even protect the 
axon from degeneration during autoimmune 
demyelination. 

CD44 is a known ligand of OPN, mediat- 
ing a decrease of IL-10 production (10). As 
shown here, OPN-I- mice produced elevated 
IL-10 during the course of EAE. We recently 
demonstrated that antibodies against CD44 
prevented EAE (37), suggesting that the 
proinflammatory effect of OPN in MS and 
EAE might be mediated by CD44. The bind- 
ing of OPN to its integrin fibronectin receptor 
a ,  p, through the arginine-glycine-aspartate 
tripeptide motif may also perpetuate T,1 in-
flammation (10). In active MS lesions, the a, 
subunit of this receptor is overexpressed in 
macrophages and endothelial cells, and the 
p, subunit is expressed on endothelial cell 
l h i n a l  surfaces (23). By means of its trip- 
eptide-binding motif, OPN inhibits inducible 
nitric oxide synthetase (iNOs) (38),which is 
known to participate in autoimmune demy- 
elination (1). Thus, in conclusion, OPN is 
situated at a number of checkpoints that 
would allow diverse activities in the course of 
autoimmune-mediated demyelination. 
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Killed or inactivated vaccines targeting intracellular bacterial and protozoal 
pathogens are notoriously ineffective at generating protective immunity. 
For example, vaccination with heat-killed Listeria monocytogenes (HKLM) is 
not protective, although infection with live L. monocytogenes induces long- 
lived, CD8 T cell-mediated immunity. We demonstrate that HKLM immu- 
nization primes memory CD8 T lymphocyte populations that, although 
substantial in size, are ineffective at providing protection from subsequent 
L. monocytogenes infection. In contrast to live infection, which elicits large 
numbers of effector CD8 T cells, HKLM immunization primes T lymphocytes 
that do not acquire effector functions. Our studies show that i t  is possible 
to dissociate T cell-dependent protective immunity from memory T cell 
expansion, and that generation of effector T cells may be necessary for 
long-term protective immunity. 

CD8 T lymphocytes mediate immunity to a (2-4). Memory T cells can be subdivided 

broad range of viral, bacterial, and protozoal into two categories on the basis of activation 

pathogens (I), and increasing evidence sug- markers, homing receptor expression, and ef- 

gests that effector T cells primed during in- fector function (5). Central memory T cells, 

fection evolve into long-lived memory cells which express high levels of the chemokine 
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receptor CCR7 and the adhesion molecule ory T cells, which express low levels of differ in their capacity to mediate protec- 
CD62L and do not express effector func- CCR7 and CD62L but produce cytokines tive immunity is unknown. Furthermore, 
tions, may differentiate into effector mem- ( 6 ) . Whether these memory T cell subsets the stimuli that generate central versus ef- 

Fig. 1. HKLM immunization primes antigen-specific memory CD8+ T cell 
responses. (A) CB6 mice (6 t o  8 weeks old) were immunized intravenously 
with PBS, lo4live L. monocytogenes, or two  consecutive daily doses of lo9 
HKLM (73). Mice were infected 21 days later with lo4 (nake and HKLM- 
immunized mice) or l o5 (immune mice) live L. monoq-togenes. Splenocytes, 7 
days after infection in PBS-treated mice and 5 days after infection in HKLM and 
live L. monocytogenes-immunized mice, were stained for CD8a and CD62L 
and wi th  H Z - K ~  tetramers complexed wi th  three L. monoqtogenes-
derived epitopes (LLOg,-,, p60217-225, p60,,,,,).and Dot plots are gated on 
live CD8 T lymphocytes and show CD62L and HZ-Kd tetramer staining. The 
percentage of activated tetramer-positive CD8 T cells is shown in the upper 
left quadrant of each panel. (B) CB6 mice were immunized with two  
intravenous doses of 10' HKLM, l o 4  live L. monocytogenes, or PBS and 
were challenged 21 days later with 104 live L. monocytogenes. Protective 
immunity was measured by dissociating spleens 72 hours after infection 
and quantifying viable bacteria. Mean numbers of colony-forming units 
(CFU) from six mice per group are shown (error bars, SD). (C) BALBIc mice 
were immunized with 2000 live I .  monocytogenes and, 4 weeks Later, left 
untreated or depleted of CD8 T cells by intravenous administration of three 
consecutive daily doses of 100 k g  of CD8a-specific mAb (anti Lyt 2, 
53-6.72, American Type Culture Collection) before rechallenge with l o 5  
live L. monocytogenes. Mice received an additional dose of CD8 mAb 3 days 
after infection. CD8 T cell depletion was greater than 90%. Mean numbers 
of bacteria in spleens (three mice per group) 72 hours after infection are 
shown (error bars, SD). 

Fig. 2. HKLM directly primes antigen-specific CD8+ T 
cells, but not L. monocytogenes-specific CD4+ T cells. (A) 
CB6 mice (three per group) were injected intravenously 
with PBS or HKLM derived from a mutant L. monocyto-
genes strain lacking the LLOgl-gg epitope (see text) and 
were rechallenged 21 days later wi th live L. monocyto-
genes. The frequencies of CD8 T cells specific for LLOgl-gg 
and p60,17-225 were determined by tetramer staining 5 
days after infection. (B) Mice were immunized with live I .  
monocytogenes, HKLM, or PBS; 6 days later, splenocytes 
were restimulated in vitro with HKLM (top row) or PBS 
(bottom row) in the presence of brefeldin A (BFA) for 6 
hours. IFN-y production was measured by intracellular 
cytokine staining using manufacturer's protocols (Cyto- 
fixlcytoperm, Pharmingen). Dot plots show CD4 and 
IFN-y staining; percentages of CD4 T cells producing IFN-y I 
are shown. (C) BALBIc or CIITA-'- mice (8 to  10 weeks old) 
were infected'intravenous~~ with live L. honocytogenes and 
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fector memory T cells remain undefined. mice with live L. monocytogenes induces an- fection (Fig. 1B). In contrast, H U M  immu- 
Listeria monocytogenes is a Gram-posi- tigen-specific CD8 T cell responses, with nization was not protective (Fig. 1B). Sur- 

tive, facultative intracellular bacterium that peak frequencies 7 to 9 days after infection of prisingly, HUM-immunized mice mounted 
causes severe disease in immunocompro- naive mice and 5 days after reinfection of memory CD8 T cell responses that were in- 
mised patients (7). Studies in a mouse model immune mice (12). To determine whether distinguishable in size from those detected in 
of listeriosis have demonstrated that CD8 T H U M  immunization primes L. monocyto- immune mice (Fig. lA, bottom row). Mice 
cells mediate protective immunity after im- genes-specific CD8 T cells, we immunized immunized with HKLM derived from an 
munization with live bacteria (8-10). HKLM CB6 (C57BLl6 X BALBIc F,) mice with live avirulent strain of L. monocytogenes lacking 
immunization, on the other hand, does not L. monocytogenes or HKLM (13) and, 21 LLO also primed CD8 T cell responses to 
induce protective immunity (11). Infection of days later, intravenously infected these mice p60 (14), indicating that residual LLO asso- 

with live L. monocytogenes. The magnitude ciated with HKLM is not allowing access to 
of the L. monocytogenes-specific CD8 T cell the cytosol of APCs. 

'Infectious Disease Service. Department of Medicine, response was measured by H2-Kd tetramer Although CD8 T cells can provide protective 
Memorial Sloan-Kettering Cancer Center. Imrnunolo- 
gy Program. Sloan-Kettering Institute, 1275 York Av- staining of splenocytes (Fig. 1A). CD8 T immunity to L. monocytogenes infection, CD4 T 
enue, New York. NY 10021, USA. 2Section of Immu- cells specific for the irnrnunodominant list- cells and antibodies have also been implicated in 
nobiology, Yale School of Medicine, New Haven, CT eriolysin epitope LLO,,-,, were detectable 7 immunity (10, 15). To measure their contribu- 
06511, USA. days after infection of naYve mice (Fig. lA, tion to protective immunity, we depleted CD8 T 
*These authors contributed equally to this work. upper left panel), whereas responses to the cells from immune mice and challenged them 
?Present address: Henry M. Jackson Foundation for subdominant p60,, ,-,,,and p604,9.4,, with L. monocytogenes. Depleted animals were 
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Fig. 3. HKLM-primed CD8+ T 
cells undergo limited primary A 
expansion and do not acquire 
effector functions. (A) TCR-
transgenic mice specific for Un-
p60,17-225 were generated with infected 
the TCRa and P chain genes 
from CTL clone L9.6 and back- 
crossed t o  the BALB/c (Thyl.2) 
background (79). L9.6 TCR- infecfed Live L.m HKLM 
transgenic splenocytes (2.2 X 
lo7) were labeled with 5 p,M 
CFSE and transferred into 
BALB/c Thyl.1 mice. One day 
later, mice were intravenously 
injected with PBS, live L. mono-
cytogenes, or HKLM. Spleno-
cytes were recovered 3, 5, and 7 HW 
days after immunization and 
stained with antibodies specific 
for CD8a and Thyl.2. CFSE 
staining intensity and staining 
for Thyl.2, which identifies 
transferred T cells, are plotted 
for live CD8 T cells. Percentages 
of Thyl.Zf cells that are CFSE 
low, intermediate, and high are 
shown in each plot. (B) Percent-
ages of cells that have divided 
from 0 t o  >7 times (as deter- 
mined by the intensity of CFSE 
fluorescence) are plotted for un- 
infected, live L. monocytogenes-
infected, and HKLM-immunized 
mice on the f i f th day after inoc- 
ulation. (C) Absolute numbers of 
transferred Thyl.2+ T cells that  remained undivided or that  prolifer- control and t w o  live and HKLM-immunized mice. (E) p60,,,~,,5 
ated in uninfected, live L. monocytogenes-infected, and HKLM-immu- TCR-transgenic spleen cells (Thyl.2; 2.2 X lo6)  were labeled wi th  
nized mice were determined on the f i f th day after inoculation. (D) For CFSE and transferred into Thyl.1 BALBIc recipient mice. One day 
determination of the cytolytic activity of transferred L9.6 TCR- later, mice were injected intravenously w i th  PBS (upper panel), live L. 
transgenic T cells, CD8 T cells were enriched wi th  MACS anti-CD8a monocytogenes (middle panel), or HKLM (tower panel). Splenocytes 
beads (Ly-2, Miltenyi Biotech) f rom mice immunized 7 days previous- were taken 5 days later and stimulated in  vitro for 6 hours w i th  10  
ly  w i th  PBS, live L. monocytogenes, or HKLM. Direct cytolytic activity p,M p602,,,- *, in the presence of BFA. IFN-y synthesis by the specific 
of these CD8 T cells was measured in  a 6-hour 51Cr release assay T cells was determined by intracellular cytokine staining of Thyl.Z+ 
using p602,7,-22,-pulsed P815 target cells. Percent specific lysis is CD8 T cells. The percentage of IFN-y-producing, CFSE'O CD8 T cells is 
plotted for three d~fferent effector-to-target ratios for an uninfected indicated in  the upper left quadrant of each plot. 
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cific for CD8P yielded similar results (16). 
The robust CD8 T cell memory responses in 

HKLM-immunized mice could have resulted 
fiom direct priming of antigen-specific CD8 T 
cells or, indirectly, through priming of L. mono-
cytogenes-specific CD4 T cells that would act 
to accelerate naive CD8 T cell responses upon 
challenge with live bacteria. To distinguish be- 
tween these two mechanisms, we immunized 
mice with HKLM laclung the immunodominant 
LLO,,-,, CD8 T cell epitope (HKLMLLO-). 
This strain of L. monocytogenes was generated 
by point mutation of an essential anchor residue 
of LLO,,-,, and expresses functional LLO (1 7). 

I 
CFSE staining 

Fig. 4. Concurrent live infection with L. mono-
cytogenes does not alter the phenotype of 
HKLM-primed CD8 T cells. L9.6 TCR-transgenic 
splenocytes (Thyl.1; lo6) were labeled with 
CFSE and transferred into Thyl.2 mice. One 
day later, mice were either left uninfected (A), 
infected with live wild-type L. monocytogenes 
(B), or immunized with HKLM alone (C) or 
together wi th live wild-type L. monocytogenes 
(D). One group of mice was immunized with 
HKLM and concurrently infected with live L. 
monocytogenes 218Ser (E), which contains a 
point mutation in p60, eliminating the 
p60,,,.,,, epitope. After 4.5 days, spleno- 
cytes were stained wi th  mAbs specific for 
CD8, Thyl.1, and CD62L. Dot plots show 
CFSE and CD62L staining of gated Thyl .1 
CD8 T cells. Each plot shows results for a 
single animal and is representative of t w o  
mice per experimental group. The percentage 
o f  transferred CD8 T cells in the C D ~ ~ L ~ '  and 
C D ~ ~ L ' "quadrants is shown. 

If CD4 T cell responses accelerate CD8 T cell 
responses upon live challenge of HKLM-immu- 
nized mice, LLO,,.,,-specific responses would 
be ex~ected to still be enhanced in HKLMLL0-- 
immunized mice. infection of mice previously 
immunized with HKLMLLO- resulted in a pri- 
mary-like CD8 T cell response to LLO,,.,,, 
similar to that obtained upon primary infection 
of nai've mice with L. monocytogenes (Fig. 2A, 
top row), but a memory-like CD8 T cell re- 
sponse to p602,,-,,, (Fig. 2A, bottom row). This 
experiment demonstrates that HKLM immuni- 
zation primed CD8 T cell responses indepen- 
dently of CD4 T cell priming. Indeed, CD4 T 
cells fiom HKLM-immunized and naive mice, 
in contrast to mice lnfected with live bacteria, do 
not respond to bacterial antigen (Fig. 2B), which 
suggests that HKLM immunization does not 
efficiently prime CD4 T cells. Furthermore, in- 
fection of HKLM-immunized mice did not re- 
sult in memory CD4 T cell responses (14). 

One explanation for a lack of protective 
immunity in HKLM-immunized mice may be 
that deficient CD4 T cell responses limit L. 
monocytogenes-specific CD8 T cell function. 
To determine whether CD4 T cells influence 
CD8 T cell responses to L. monocytogenes in- 
fection, we measured the LL0,1~,9-specific 
CD8 T cell response in mice lacking the class I1 
transactivator gene (CIITA-'). These mice have 
a 95% reduction in peripheral CD4 T cells and 
do not mount peripheral CD4 T cell responses 
because B cells, dendritic cells, and macro-
phages lack major histocompatibility complex 
class I1 molecules (18). The primary CD8 T cell 
response to L. monocytogenes infection was 
identical in CIITA-deficient and control mice 
(Fig. 2C). Similarly, reinfection of previously 
immunized CIITA-I- and control mice elicited 
indistingushable memory LLO,,,,-specific 
CD8 T cell responses. CIITA-deficient mice 
cleared bactenal infection and developed similar 
protective immunity (Fig. 2D). Thus, CD4 T 
cell responses do not account for the difference 
in protective immunity after live and HKLM 
immunization. 

To further characterize CD8 T cell prim- 
ing by in vivo HKLM immunization, we 
generated a transgenic mouse line expressing 
T cells with specificity for p602,7.225 (19). 
Naive, antigen-specific T cells from these 
mice were labeled with carboxyfluorescein 
diacetate succinimidyl ester (CFSE) and 
transferred into nai've recipient mice, allow- 
ing us to trace their fate after live infection or 
HKLM immunization. Donor CD8 T cells 
can be distinguished from recipient cells by a 
congenic Thy1 disparity. In the absence of 
infection, transferred p60, ,7.225-specific 
CD8 T cells remained CFSE positive (Fig. 
3A, top row), indicating that they had not 
undergone in vivo divisions after transfer. In 
contrast, infection with live L. monocyto-
genes resulted in a large population of CFSE- 
low donor CD8 T cells (Fig. 3A, middle row). 

Immunization with HKLM also induced the 
expansion of p602,7~22,-specific T cells, 
with the majority of transferred T cells enter- 
ing division (Fig. 3A, bottom row). However, 
in contrast to priming by live infection, 
p60217~225-specific T cells primed with 
HKLM underwent fewer divisions (Fig. 3B). 
The proportions of naive p602,7.22,-specific 
T cells that proliferated after infection with 
live bacteria or immunization with HKLM 
were not significantly different (Fig. 3C), 
which suggests that transferred T cells en- 
counter similar levels of processed antigen. It 
is unlikely that decreased T cell proliferation 
reflects insufficient antigen presentation, be- 
cause mice immunized with los, lo9, and 
10'' HKLM yielded similar results. Further- 
more, we and others have demonstrated that 
naive CD8 T cells require only brief encoun- 
ter with antigen to undergo prolonged divi- 
sion (20-22). Thus, it is unlikely that a short- 
er duration of in vivo antigen presentation 
after HKLM immunization accounts for de- 
creased proliferation. 

To determine whether L. monocytogenes- 
specific CD8 T cells activated by HKLM 
immunization express cytolytic activity, we 
transferred p602,7.225-specific T cells and 
infected recipients with live L. monocyto-
genes or immunized with HKLM. Seven days 
later, CD8 T cells were assayed for cytolytic 
activity. CD8 T cells from infected recipients 
were cytolytic, whereas those from HKLM- 
immunized recipients displayed no lytic ac- 
tivity (Fig. 3D). Because the ratios of anti- 
gen-specific T cells to target cells were sim- 
ilar, these results demonstrate that CD8 T 
cells induced to proliferate by HKLM do not 
acquire cytolytic activity. Similarly, the pro- 
portion of p602,7~22,-specific T cells produc- 
ing interferon-? (IFN-y) after HKLM immu- 
nization is reduced relative to live infection 
(Fig. 3E). These experiments show that 
HKLM immunization supports CD8 T cell 
expansion, but not differentiation into effec- 
tor CD8 T cells. 

Consistent with their disparate effector 
functions, p60217~225-specific CD8 T cells 
after live immunization became CD62L1", 
whereas HKLM-primed T cells remained 
CD62Lh' (Fig. 4, B and C). To determine the 
possible impact of CD4 T cell help andfor 
inflammation on CD8 T cell priming, we 
coimmunized mice with HKLM and live bac- 
teria. Concurrent immunization of mice with 
HKLM and live wild-type bacteria resulted in 
two distinct populations, one CD62Lh' and 
the other CD62L1", suggesting that some T 
cells are primed by live infection while others 
follow the HKLM route (Fig. 4D). Concur- 
rent immunization with wild-type HKLM and 
live bacteria lacking the p602,,,,, epitope 
primed T cells that underwent fewer divisions 
and remained CD62Lh' (Fig. 4E), demon- 
strating that CD4 T cell responses and in- 
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