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In the modern ocean, a significant amount of nitrogen fixation is attributed to 
filamentous, nonheterocystous cyanobacteria of the genus Trichodesmium. In 
these organisms, nitrogen fixation is confined to the photoperiod and occurs 
simultaneously with oxygenic photosynthesis. Nitrogenase, the enzyme re- 
sponsible for biological N, fixation, is irreversibly inhibited by oxygen in vitro. 
How nitrogenase is protected from damage by photosynthetically produced 0, 
was once an enigma. Using fast repetition rate fluorometry and fluorescence 
kinetic microscopy, we show that there is both temporal and spatial segregation 
of N, fixation and photosynthesis within the photoperiod. Linear photosyn- 
thetic electron transport protects nitrogenase by reducing photosynthetically 
evolved 0, in photosystem I (PSI). We postulate that in the early evolutionary 
phase of oxygenic photosynthesis, nitrogenase served as an electron acceptor 
for anaerobic heterotrophic metabolism and that PSI was favored by selection 
because it provided a micro-anaerobic environment for N, fixation in 
cyanobacteria. 

Nitrogenase, the enzyme that catalyzes the tosynthetically produced 0, and how this 
reduction of atmospheric N, to ammonia, is process is regulated has been an enigma since 
irreversibly inhibited upon exposure to mo- Dugdale et al. first identified these organisms 
lecular oxygen (I, 2). Cyanobacteria produce as light-dependent diazotrophs 40 years ago 
molecular oxygen via photosynthesis and (3-8). In Trichodesmium, nitrogenase is lo- 
have evolutionary adaptations that protect ni- calized in subsets of consecutively arranged 
trogenase from oxygen; these adaptations in- cells in each trichome, which also contain 
clude either a temporal separation, in which photosynthetic components (8, 9, 10) and 
N, fixation occurs in the dark, or a spatial comprise 15 to 20% of all cells (9-1 4). Here, 
segregation, in which N, fixation is confined we demonstrate that a combined temporal 
to a specialized cell, the heterocyst, in which and spatial segregation of N, fixation and 
only PSI remains active. The major bloom- oxygen evolution provides a window of op- 
forming N,-fixing organisms (diazotrophs) in portunity that permits the cells to fix nitrogen 
modem oceans belong to the genus Tri- for only a few hours during the photoperiod. 
chodesmium. This genus is characterized by Using fast repetition rate fluorometry 
nonheterocystous filaments (trichomes), (FRRF) (15), oxygen production, and carbon 
which form colonies. Trichodesmium are un- and N, fixation, we found that changes in the 
usual among cyanobacteria because they fix activity of photosystem I1 (PSII) reveal a tem- 
nitrogen only during the photoperiod, while poral separation between N, fixation and pho- 
simultaneously producing 0, (3, 4). How tosynthesis during the photoperiod. In the field, 
nitrogenase is protected from damage by pho- photosynthetic carbon fixation increased in the 

morning but declined at midday, when nitroge- 
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oxygen (Fig. 2D). The photochemical quantum 
yield [variable fluorescence/maximal fluores- 
ence (FJF,)] of PSII varied inversely with N, 
fixation in both field and cultured populations 
(Figs. 1 and 2). During the photoperiod, FJF,, 
was 50 to 60% lower at the peak of N, fixation, 
increasing to maximum values at the end of the 
photoperiod, when N, fixation declined (Figs. 
1B and 2, A and C). This characteristic die1 
pattem in the quantum yields was observed 
under both subsaturating and saturating irradi- 
ances (Figs. 1B and 2, A and C) but disap- 
peared when N, fixation was inhibited in cells 
grown with nitrate (Fig. 2B). 

We used FRRF to determine temporal 
changes in the redox state of photosynthetic 
electron transport (PET) components. The 
rate of oxidation of the primary electron ac- 
ceptor in PSII, quinone A (Q,), declined 
from sunrise to sunset, which suggested that 
the electron transfer components downstream 
of Q, [e.g., at the plastoquinone (PQ) pool] 
are chemically reduced (Fig. 1, C and D) 
(17). The retardation of electron flow led to 
lower quantum yields and lower rates of pho- 
tosynthetic oxygen production (Fig. 1B). 

Blocking linear electron transport on the 
acceptor side of PSII with the inhibitors 3-3,4- 
dichlorophenyl- 1 ',1 '-dimethylurea (DCMU) 
and 2,5-dibromo-3-methyl-6-isopropyi-p-
benzoquinone (DBMIB), whlch poise the PQ 
pool in either an oxidized or reduced state, 
respectively (IS), caused an immediate decline 
in nitrogenase activity when applied to cultures 
under aerobic conditions [Web fig. 1 (19)l. 
Under anaerobic conditions, however, nitroge- 
nase activity was Inhibited by DBMIB, which 
affects both photosynthetic and respiratory 
pathways (20), but was not inhibited by 
DCMU, which inhibits only Q, oxidation. 
These results reveal that PET is not an irnme- 
diate source of electrons for nitrogenase; dark 
respiration, although required for N, fixation, is 
inadequate as an oxygen-scavenging mecha- 
nism (21); and linear PET is required for N, 
fixation under aerobic conditions [Web fig. 2 
(19)l. The differential effect of DCMU under 
aerobic and anaerobic conditions reveals that 
nitrogenase is protected from oxygen by elec- 
trons supplied by PSII. This phenomenon 
strongly implies that oxygen is scavenged by 
PSI via the Mehler reaction (22) [Web fig. 2 
(1911. 

We used fluorescently tagged primary an- 
tibodies to nitrogenase and to Dl ,  a core 
protein of the oxygen-evolving PSII reaction 
center (23), to examine the pattem of segre- 
gation of N, fixation and oxygenic photosyn- 
thesis on a cellular level. D l  was present in 
most cells in a trichome, including those con- 
taining nitrogenase (Fig. 3C). Because the 
turnover of Dl  is extremely rapid (24), the 
presence of this protein strongly implies that 
oxygen production and N, fixation are not 
simply sflatially segregated Moreover, when 
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N, fixation is maximal, H20, (produced pri- Fig 1. (A to  D) Diel changes 
h marily by the reduction of 0, by the Mehler in N, fixation, carbon uptake, - 

reaction) is present in most cells in the and patterns 1" . - 5  5 
measured by a FRRF flu- -E , trichomes, including central zones where ni- orometer on surface popula- .= lm.. - 4 .$ ig 

trogenase is clustered (25) (Fig. 3D). Z 
tions of Trichodesmium spp. 90 

We used a microscope equipped for two- (both colonies and free fils- 2 
dimensional measurement of in vivo chloro- ments) collected from the ~o 

U" 30 - 1  2 u  phyll fluorescence kinetics (26) to further Arafura and Timor Seas from .g Z u T  
examine the spatial heterogeneity in photo- 29 October l5 NOvem- - 0- 

* 
0.8 

0 - 
synthetic activity of PSII within individual ~~~~;~ 2) R ~ ~ ~ ~ ~ ~ ~
cells and between trichomes. A combination (squares) (as measured by 0.6 - 
of actinic radiation, saturating flashes, and a acetylene reduction) and ac- 0.5 -- 
pulsed measuring light was applied to the id-stable 14C uptake (trian- eE 
microscopic field, enabling high spatial reso- gles) for T. thiebautii colonies L? 

0.3 -4 
lution of measured and derived fluorescence On and 0.2 - 

ber 1999. (B to  D) Data rep- parameters for individual cells within the 
resent measurements made 

trichomes. In cultures measured during the sea water from (fil- 
early and late stages of the photoperiod, and tered through a 200-pm net) 

m 
in nitrate-grown or stationary-phase cultures, during 7 and 8 November vl 

the total fluorescence yield was homoge- (solid symbols) and 11 and loo' 

neous in 85% of the trichomes (Fig. 3E), l2 Vm- !+ 

bols), using a continuous although zonations were observed in F,IF, flowthrough FRR fluorome- 
(Fig. 3G). In nitrogen fixing cultures, total ter. M~croscop~c observations 
fluorescence was high (Fig. 3F) and the quan- showed mostly free fils- 
tum yield of photochemistry in PSII was low ments and small colonies of = 
(Fig. 3H). The lower quantum yields were a Trichodesmium SPP. in these % 
consequence of a proportionately larger in- (B) 

quantum yields (FJF,). Data crease in the initial dark-adapted fluorescence shown are a of 
(F,) than in F,, implying that PSI1 reaction cont~nuous FRRF measure- 
centers are reduced on the acceptor side (15). ments on 7 and 8 November 

0 3 G 9 12 15 18 21 24 

The bright inactive zones were nonuniformly (solid diamonds) and the av- Local time (h) 

distributed and were seen in whole filaments, erage and standard deviations from the total samples of handpicked colonies between 29 October 
on the tips of filaments, and in central areas and 15 November 1999 (solid squares). (C) Oxidation rates of Q, (71. (D) Redox state of the PQ 

of trichomes (Fig. 3F). Cells could pho- estimated from = 'm (ST - MT)I. 

tosynthetic activity (i.e., variable fluores- - - 
cence) on and off within 10 to 15 min, illus- 1.1 35 -- h 
trating that in Trichodesmium, in contrast to 
fully evolved heterocystous cyanobacteria, 
all cells are photosynthetically competent, 
but individual cells modulate oxygen produc- 
tion and consumption during the photoperiod. 2 o.7 .; 
Moreover, the increased occurrence of inac- 
tive photosynthetic zones during the hours of " 0.6 .; 
high N, fixation is evidence of both temporal 

I 
and spatial segregation of the two processes. 0.5 --- 0.5- - .  . . . 

ln Our results (Figs. 1 to 3) demonstrate a -2 

combined spatial and temporal segregation of ,., -1 Cultt~re grown with zoo p~ nitmtr: 
E N, fixation from photosynthesis and suggest , a sequential progression of photosynthesis, $ 

respiration, and N, fixation in Trichodes- .$ o.9 gN 20; 
mium over a die1 cycle. These pathways are - 
entrained in a circadian pattern (27) that is 
ultimately controlled by the requirement for " -16 

an anaerobic environment around nitrogenase 
0.6 ! , ,--. (28). Light initiates photosynthesis, providing 

energy and reductant for carbohydrate syn- 0 4 8 12 16 20 24 8 10 12 14 16 18 20 22 

thesis and storage, stimulating cyclic and ~ o c a ~  time (h) Local time (h) 

~seudoc~cl ic  (Mehler) electron cycling Fig. 2. Die1 patterns in N2 fixation, in quantum efficiencies of PSI1 and in respiratory oxygen consump- 
through PSI, and poising the PQ pool at tion and photosynthetic oxygen evolution in cultures of Trichodesmium strain IMS101. (A and B) Axenic 
reduced levels (Figs. 1A and 2, A and C) cultures grown under a 14:lO hour lightldark cycle (LID) under 40 pmol of quanta m-2 s-'. (C and 

[web fig. 2 (1911. ~ i ~ h respiration rates (29) D) Culture grown at 12:12 LID under 80 pmol of quanta mP2 s-'. (A and C) Quantum yields (triangles) 

early in the photoperiod (Fig. 2D) supply and acetylene reduction rates (diamonds) of culture grown under diazotrophic conditions with no 
inorganic nitrogen source. (B) Quantum yields (triangles) of culture grown on 200 pM NO, exhibiting 

for acid Vnthesis no N2 fixation as measured by the acetylene reduction method. (D) Oxygen consumption and evolution 
(the primary sink for fixed nitrogen) but si- as measured on a Clark-type 0, electrode. Dark respiration (triangles), gross photosynthesis (circles), 
multaneously reduce the PQ pool further, and net oxygen evolution (open circles). 
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sending negative feedback to linear PET 
[Web fig. 2 (19)l. The reduced PQ pool leads 
to a down-regulation of PSII (Figs. 3, F and 
H, and 1, C and D). However, linear electron 
flow to PSI is never abolished [Web fig. 2 
(19)l. The down-regulation of PSII opens a 
window of opportunity for N, fixation during 
the photoperiod, when oxygen consumption 
exceeds oxygen production. As the carbohy- 
drate pool is consumed, respiratory electron 
flow through the PQ pool diminishes, intra- 
cellular oxygen concentrations rise, the PQ 
pool becomes increasingly oxidized, and net 
oxygenic production exceeds consumption 
(Figs. 1A and 2, C and D). Nitrogenase ac- 
tivity is lost until the following day. 

The combination of spatial and temporal 
segregation of N, fixation and oxygenic photo- 
synthesis during the photoperiod appears to re- 
flect the evolutionary history of N, fixation in 
cyanobacteria. Nitrogenase is an ancient en- 
zyme that almost certainly arose in the Archean 
Ocean before the oxidation of the atmosphere 
by oxygenic photoautotrophs (30, 31). We pro- 
pose that under the prevailing anaerobic condi- 
tions of that period in Earth's history, N, served 

as a readily accessible electron sink for anaer- 
obic heterotrophs. In contemporary diazotro- 
phic microbes, including cyanobacteria, the re- 
ductants for nitrogenase are provided by respi- 
ratory electron flow. With the evolution of cya- 
nobacteria and the subsequent generation of 
molecular oxygen, oxygen-protective mecha- 
nisms in diazotrophs would be essential. In- 
deed, phylogenetic trees of diazotrophic cya- 
nobacteria, based on niM gene sequences, 
suggest that Trichodesmitrm branched out 
very early (32). A full temporal separation, in 
which nitrogen is only fixed at night, then 
developed in unicellular cyanobacterial dia- 
zotrophs and in some nonheterocystous fila- 
mentous diazotrophs (7). Finally, in yet other 
filamentous organisms, complete segregation 
of N, fixation and photosynthesis was 
achieved with the cellular differentiation and 
evolution of heterocystous cyanobacteria 
(33). It is remarkable that the pathway adopt- 
ed by Trichodesmium has persisted in the 
oceans through the present time. This persis- 
tence suggests that the tempo of evolution 
in marine diazotrophic cyanobacteria is ex- 
tremely slow. 
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Tumor Therapy with Targeted 

Atomic Nanogenerators 
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Neil H. Bander,3 David A. Scheinbergl* 


A single, high linear energy transfer alpha particle can kil l a target cell. We have 
developed methods t o  target molecular-sized generators of alpha-emitting 
isotope cascades t o  the inside of cancer cells using actinium-225 coupled t o  
internalizing monoclonal antibodies. In vitro, these constructs specifically killed 
leukemia, lymphoma, breast, ovarian, neuroblastoma, and prostate cancer cells 
a t  becquerel (picocurie) levels. Injection of single doses of the constructs at  
kilobecquerel (nanocurie) levels into mice bearing solid prostate carcinoma or 
disseminated human lymphoma induced tumor regression and prolonged sur- 
vival, without toxicity, in  a substantial fraction of animals. Nanogenerators 
targeting a wide variety of cancers may be possible. 

Alpha particles are high-energy, high linear en- 
ergy transfer helium nuclei capable of strong, 
yet selective, cytotoxicity (1).A single atom 
emitting an alpha particle can lull a target cell 
(2). Monoclonal antibodies conjugated to alpha 
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particle-emitting radionuclides (213Bi and 
211At)are starting to show promise in radioim- 
munotherapy (3, 4). The conjugates [213Bi]- 
HuM195 (2) and [2'3Bi]J591 (5, 6) have been 
used in preclinical models of leukemia and 
prostate cancer, respectively, and in a phase I 
human clinical trial, [2'3Bi]HuM195 was active 
against leukemia, with no significant toxicity 
(3). Astatine-2 1 1-labeled antibodies to tenascin 
(anti-tenascin) have been used clinically to treat 
malignant gliomas in humans (4) in a phase I 
trial. For clinical use of 2'3Bi, we developed a 
therapeutic dose-level 225Ac/"-13Bi generator 
device, approximately 1 cm by 6 cm in size, 
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