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Fig. 5. Association of Mecl with sites near the 
HO-induced DSB. (A) Kinetics of Mecl associ-
ation with DSB. (B) Effect of the rad9A, rad24A, 
and ddc7A mutations on Mecl associationwith 
DSB. Cells transformed with pCAL-HO or the 
control vector were processed and subjected to 
a chromatin immunoprecipitation assay, as in 
Fig. 2B (A) and Fig. 2C (B). Strains used (77) 
contain MATa and MEC7-HA. 

the association of Mecl with DNA lesions 
remains to be determined. ATR and hRad9 
are human homologs of Mecl and Ddcl,  
respectively (I),  and localize to nuclear 
foci that may contain regions of damaged 
DNA (27, 28). Because homologs of the 
checkpoint genes have been identified in 
other species, it is likely that the mecha-
nism described here is conserved in the 
checkpoint control among eukaryotic cells. 
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Dendritic cells are involved in the initiation of both innate and adaptive im-
munity. To systematically explore how dendritic cells modulate the immune 
system in  response t o  different pathogens, we used oligonucleotide microarrays 
t o  measure gene expression profiles of dendritic cells in  response t o  Escherichia 
coli, Candida albicans, and influenza virus as well as t o  their molecular com-
ponents. Both a shared core response and pathogen-specific programs of gene 
expression were observed upon exposure t o  each of these pathogens. These 
results reveal that dendritic cells sense diverse pathogens and elicit tailored 
pathogen-specific immune responses. 

How organisms respond appropriately to the 
wide variety of pathogens and antigens they 
encounter on a daily basis remains a central 
question in immunology. It has recently been 
shown that pattern recognition receptors ex-
pressed on immune cells contribute to the 
specific detection of pathogens (1, 2). How-
ever, the downstream target genes induced by 
the different pathogens have not been fully 
determined. The importance of dendritic cells 
(DCs) in initiating immune responses led us 
to investigate at a genetic level how DCs 
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discriminate different pathogens (3). DCs re-
side in an immature state in most tissues, 
where they recognize and phagocytose patho-
gens and other antigens (4). Direct contact 
with many pathogens leads to the maturation 
of DCs, which is characterized by an increase 
in antigen presentation, expression of co-
stimulatory molecules, and subsequent stim-
ulation of naive T cells in lymphoid organs 
(4). The extensive reprogramming of DCs 
during maturation prompted us to measure 
the corresponding changes in gene expres-
sion. We used oligonucleotide microarrays 
(5) to test to what extent DCs discriminate 
between phylogenetically diverse pathogens 
and whether the commonly studied molecular 
components of these pathogens are sufficient 
to account for the live pathogen response. 

Human monocyte-derivedDCs (6) were ex-
posed to a diverse set of organisms and com-
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pounds: a Gram-negative bacterial species, 
E. coli, and its cell wall component, lipo-
polysaccharide (LPS); a fungus, C. albi-
cans, and yeast cell wall-derived mannan; 
and an RNA virus, influenza A, and dou-
ble-stranded RNA (dsRNA). DCs were cul-
tured (6) with pathogens or their compo-
nents between 1 and 36 hours (7) and RNA 
was isolated, labeled, and hybridized to 
microarrays (8, 9). Each pathogen stimula-
tion was repeated in three independent do-
nors, and each component stimulation was 
repeated in two donors. Genes with expres-
sion levels that changed in response to stimuli 
(termed regulated genes) were selected on the 
basis of repeated differences in the expres-
sion levels of the treated and untreated sam-
ples across multiple time points (10). Of the 
-6800 genes represented on the oligonucle-
otide array, a total of 1330 genes changed 
their expression significantly upon encounter 
with one of the pathogens or components 
(10). Such a large-scale change in gene ex-
pression demonstrated that DCs are able to 
undergo a marked transformation in their cel-
lular phenotype. 

Analysis of the individual responses to 
pathogens showed that a unique number ,of 
genes was regulated by each pathogen. Influ-
enza and E. coli were able to modulate the 
expressionof exclusive subsets of genes (Fig. 
1, A and C) (II), whereas C. albicans only 

modulated the expression of a subset of E. 
coli-regulated genes (Fig. 1B). In addition, 
gene expression was most rapidly induced by 
E. coli, less rapidly by C.albicans, and most 
slowly by influenza (12). 

The intersection of the three different 
pathogen responses revealed a common set of 
166highly regulated genes (Fig. 1, A and D). 
To describe the dynamics of DC response 
after exposure to any of the three pathogens, 
we classified these genes according to their 
kinetics of expression and known biological 
functions (Fig. 2) (13). Immediately after 
contact with any of the three pathogens,' a 
rapid decline was observed in the transcript 
levels of genes associated with phagocytosis 
and pathogen recognition (Fig. 2B). At the 
same time, there was a transient increase in 
the expression of immune cytokines, chemo-
kines, and receptors that contribute to the 
recruitment of monocytes, DCs, and macro-
phages to the.site of infection. Also strongly 
induced was a set of cytoskeletal genes that 
may potentially mediate shape change and 
migratory behavior of activated DCs. The 
induction of signaling genes and transcription 
factors in the middle phase may be involved 
in preparing the DC to be receptive to regu-
latory signals in the lymphatics and lymph 
nodes. In'addition, several antigen process-
ing and presentation genes were induced to 
high levels in a sustained fashion. Genes 

Influenza 

Fig. 1. Pathogen-regulated gene expres-
sion in human monocyte-derived DCs. (A) 
Overlappingsets of E. coli-, C. albicans-, 
and influenza-regulated genes (10).Num-
bers in the overlapping region of the 
Venn diagram represent common regu-
lated genes. Numbers of pathogen-spe-
cific genes are shown inside the stippled
circles (71) .  Some pathogen-specific k v m
genes are also found in the common ~ e ~ a ( h r ~  Relative 
group but are much more strongly regu- tyresslon hduo(bn 
lated in one pathogen than in others. (B) 2 8 ~ o d s 

Representation of mRNA expression lev-
els at 0.1. 2. 4. 8. 12. and 24 hours in 

-

involved in generating reactive oxygen spe-
cies (ROS) were induced across the time 
course, which suggests that infecting or-
ganisms are killed throughout DC matura-
tion and migration. Finally, during the late 
phase, chemokine receptors known to me-
diate responses to lymph node chemokines, 
thereby mediating DC migration, were up-
regulated (14). The set of 166 genes de-
scribed here thus constitutes part of a core 
DC response. This response is elicited in-
dependently of pathogen characteristics 
and unfolds as a temporally ordered cas-
cade that modulates both innate and adap-
tive immune responses (Fig. 2C). 

In contrast, analysis of the E. coli-spe-
cific genes (Table 1 and Fig. 1E) showed 
that DCs also strongly and rapidly up-reg-
ulated most innate immune genes on the 
array, including inflammatory cytokines, 
neutrophil- and monocyte-attracting che-
mokines, and prostaglandin pathway com-
ponents. This potent inflammatory re-
sponse probably is partially counteracted 
by interleukin-10 (IL-10) that is induced in 
the middle phase. At later times, genes that 
regulate the adaptive immune response 
were induced, including T cell-stimulating 
genes, secreted cytokines, and a subset of 
chemokines that are thought to attract naYve 
T,2 T helper cells (15). An unexpected 
class of cytokine receptors that share a 

D E. d l  C.alb Infl 

response to cili gnd.~.albicans. Each gene is represented by a single grams. From top to bottom: E. coli- but not C. albicans-regulated genes; 
row of colored bars, and each time point is represented by a single common regulated genes; C. albicans- but not E. coli-regulated genes. 
column. Color bars represent the ratio of hybridization measurements (C) Gene profiles and overlaps for E. coli and influenza. (D and E) Gene 
between correspondingtime points in the pathogen and control medium expression of common response genes [(D), see also Fig. 21 and differ-
profiles, according to the scale shown. Genes are placed in groups ential response genes [(E), samegenes as in Table 11in three independent 
corresponding to pairwise overlaps shown in accompanying Venn dia- donors. 
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common y chain (IL-2R, IL-7R, IL- 1 SR, 
and IL-4R) were also induced. The expres- 
sion of these receptors may allow DCs to 
respond to lymphocyte-derived interleukins 
within the lymph node. 

All these irnmunostimulatory responses 
may be enhanced through induction of ad- 
ditional induced gene families (Table 1) 
(12)-for example, cell stress genes that 
modulate levels of antimicrobial ROS, an- 
tiapoptotic genes that may extend the life- 
time of the infected DC (Id), and the late- 
expressing matrix metalloproteases that 
may allow processing of cytokines and DC 
migration to lymph nodes (17). Genes with 
undefined roles in DC function were also 
regulated by E. coli, including signaling 
molecules, transcription factors, adhesion 

molecules, and many of the glycolytic 
genes. HIFla, a known transcription factor 
of glycolysis genes, was also up-regulated 
(18). Collectively, these diverse changes of 
gene expression in response to E. coli and 
LPS reflect a significant cellular and im- 
munological reprogramming of the DC. 

Relative to the response of DCs to E. coli, 
their response to C. albicans was greatly 
attenuated in many functional categories and 
constituted a subset of the E. coli response, 
with a much smaller number of immune 
genes and with no robust C. albicans-spe- 
cific genes (Fig. 1, A and B, and Table 1). 
Because many of the immune genes are 
known to be regulated by the transcription 
factor NF-KB (19), this difference may be 
partially explained by the relatively weak 

Fig. 2. Expression kinetics of common response genes in DCs. (A) Schematic transient (T) and 
sustained (5) gene expression profiles based on self-organizing map clusters of up-regulated genes 
(38). Temporal clustering of up-regulated genes is based on the expression kinetics of E. coli- 
responsive genes (E, early; M, middle; L, late). Down-regulated genes (down) were placed into a 
single cluster. (B) Function of genes regulated at different times in response t o  any pathogen; 
underlined genes are down-regulated; all others are up-regulated. GenBank accession numbers are 
listed in (72). (C) Stages in DC life: encounter and phagocytosis of pathogens, activation of the 
innate immune response, migration to  the lymph node, antigen presentation and stimulation of the 
adaptive immune cells, and apoptosis. 

NF-KB up-regulation (Table 1). 
DCs regulated a large number of genes in 

response to influenza, comparable to the 
number regulated in response to ' E. coli. 
However, the innate immune response was 
relatively weak and completely devoid of 
genes capable of stimulating neutrophils, as 
confirmed by a neutrophil chemotaxis assay 
(12). The adaptive response to influenza was 
also distinct from the response to E. coli. The 
antiviral geneethose encoding interferon 
(IFN) a and p-were strongly induced, as 
were the interferon-inducible chemokine 
genes (Table 1). This suggests possible ef- 
fects on induction and migration of naYve T,1 
cells (15). An important subset of genes in- 
duced by influenza are linked with the inhi- 
bition of the immune response at certain stag- 
es. These include proapoptotic genes that 
may lead to early death of infected cells (1 6) 
as well as genes encoding mcp-1, which can 
block IL-12 production in macrophages (20); 
HLA-E, which can inhibit natural killer cells 
(21); Gfq, a close homolog of a protein that 
inhibits NO synthesis (22); and IDO, which 
can inhibit T cell activation (23). Influenza 
also modulated the expression of a large set 
of genes involved in diverse cellular func- 
tions and whose contribution to pathogen- 
host interactions may not have been studied 
previously (12). 

To further dissect the ability of DCs to 
discriminate pathogens, we investigated 
whether individual pathogen components 
were sufficient to elicit these differential 
pathogen responses. Despite additional ac- 
tive molecules known to be present on 
bacteria, LPS was able to mimic and ac- 
count for almost the entire bacterial re- 
sponse (Fig. 3A). Unexpectedly, the fungal 
component mannan mimicked the magni- 
tude and biological character of the bacte- 
rial response more closely than it did the 
fungal or viral response profiles (Fig. 3, A 
and B) (12). Although dsRNA was a less 
potent.stimulator of the bacterial response, 
it did elicit a strong innate response com- 

A E. coil LPS C. alb. Man Infl. dsRNA 
685 571 289 627 531 324 

B E. coil Man E. coil ~ ~ R N A  
685 627 685 324 

Fig. 3. Relation between pathogen- and com- 
ponent-responsive genes. (A) Overlapping sets 
of pathogen-regulated and corresponding com- 
ponent-regulated genes (as in Fig. 1). (B) Com- 
parison of E. colCregulated and other compo- 
nent-regulated genes. 
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parable to that induced by bacteria, and at 
the same time elicited aspects seen in the 
viral response (Fig. 3, A and B) (12). Thus, 
all three components were able to elicit the 
expression of many innate immune genes 
as well as most of the genes in the common 
pathogen response. This finding shows that 
the core DC program can be triggered by 
multiple stimuli with diverse molecular 
structures. 

Genome-scale studies of DC transcrip- 
tional responses have allowed us to dem- 
onstrate the existence of common and dif- 
ferential pathogen recognition pathways. 
Although there have been reports of chang- 
es in gene expression in DCs in response to 
LPS, the response to pathogens has not 
been thoroughly investigated (24, 25). Dif- 
ferential immune responses to pathogens 
have been described in clinical and animal 
studies (26-28), and we show here that 
these responses are reflected by changes in 
DC gene expression. 

The temporal cascade of gene expression 
in the common response to pathogens [which 
is also induced by Gram-positive Staphylo-
COCCUS aureus (29)] accounts for core DC 
functions and delineates the essential role of 
DCs in linking innate recognition of patho- 
gens with antigen presentation and the devel- 
opment of an adaptive T cell response (30- 
33). The existence of this common response 
reflects a convergence of pathways from re- 
ceptors that are known to distinguish some of 
these components and pathogens. In contrast, 
the presence of pathogen-specific gene ex-
pression in most functional categories (in- 
cluding transcription factors and cytokines) 
suggests that distinct pathways are activated 
by different pathogens. These differential re- 
sponses demonstrate that human monocyte- 
derived DCs are flexible in their responses 
and may even exhibit a diversity of responses 
similar to that of the different DC subtypes 
(34, 35). 

The extensive plasticity of the DCs ob- 
served in our experiments indicates that the 
concept of DC maturation cannot be simply 
defined by the modulation of a standard set of 
markers (4). Instead, we propose that DCs not 
only are capable of generating a core response 
to any pathogen, but also exhibit stimulus-spe- 
cific maturation and activation. For each stim- 
ulus, particular subsets of genes are modulated 
and lead to important physiological conse- 
quences. There is likely to be even more differ- 
ential regulation in vivo, depending on DC 
subtype, cell interactions, and tissue location. 
Determining whether these unique responses 
are advantageous to the pathogen, or to the host, 
is essential for understanding host-pathogen in- 
teractions (36). Further studies of these patho- 
gen-regulated genes may thus enhance our un- 
derstanding of DC maturation and provide fu-
ture targets for irnmunotherapy. 

Table 1. Functional categories of genes regulated differentially in response t o  E. coli, C. albicans, and 
influenza. Code: +, gene expression is up-regulated in response t o  pathogen; -, gene expression is not 
changed; + + and +++, gene expression is changed at a higher level relative t o  other pathogens that 
regulate the same gene (each + denotes increased expression by a factor of -2.5); +I-,gene expression 
is regulated in a subset of donors; d, gene expression is down-regulated. 

CenBank 
accession no. 

E. coli C. albicans Influenza 

Innate 
Neutrophil 

i18 YO0787 
gro 1 X54489 
gr02 M57731 
gro3 X53800 

Inflammation 
tnfot X02910 
i l lp  X04500 
i16 X04602 
i l la  M28983 
9csf X03656 
mip7p M69203 
mip3ot/larc U64197 
mip3p/elc U77180 
b f  L15702 

Prostaglandin/leukotriene 
p tgir D38128 ++ 
ptger4a L28175 
cox2 U04636 

-
++ 

Adaptive 
T cell: TH1 
ill2b/p40 
itac 
m ig 
inp 10 
ifnp 1 
ifnot2 
ifnot 13 
ifnot14 
ifnot16 

T cell: TH2 
tarc 
mdc 

T cell stimulation 
4lbbL 
slam 
cd86 
icam 1 
ebi3 

Antigen presentation 
p2m 
Imp10 

B cell 
pbef  

Immune receptor 
ill 5 r a  ++ 
i17r ++ 
il2r + 
il4r 
gmcsfr 
il3r 
41bb 
tnfr2 
il13ra7 
cd155 
cd83 

Immune transcription 
n f ~ b  p52 576638 
n f ~ b p 5 o  M58603 
n f ~ b  p65  L19067 
n f ~ b  re16 M83221 
sta t5a U43185 
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Table 1. Continued 
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