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In Caenorhabditis elegans, lin-4 and let-7 encode 22- and 21-nucleotide (nt) 
RNAs, respectively, which function as key regulators of developmental timing. 
Because the appearance of these short RNAs is regulated during development, 
they are also referredt o  as small temporal RNAs (stRNAs). We show that many 
21- and 22-nt expressed RNAs, termed microRNAs, exist in  invertebrates and 
vertebrates and that some of these novel RNAs, similar t o  let-7 stRNA, are 
highly conserved. This suggests that sequence-specific, posttranscriptional reg-
ulatory mechanismsmediated by small RNAs are more general than previously 
appreciated. 

Two distinct pathways exist in animals and 5), whereas stRNAs regulate developmen-
plants in which 21- to 23-nt RNAs function tal timing by mediating sequence-specific 
as posttranscriptional regulators of gene ex- repression of mRNA translation (6-11). 
pression. Small inteifering RNAs (siRNAs) siRNAs and stRNAs are excised from dou-
act as mediators of sequence-specificmRNA ble-stranded RNA (dsRNA) precursors by 
degradation in RNA interference (RNAi) (I- Dicer (12-14), a multidomain ribonuclease 

similar sizes. However, siRNAs are be-
lieved to be double-stranded (2, 5, 12), 
whereas stRNAs are single-stranded (8). 

We previously developed a directional 
cloning procedure to isolate siRNAs after 
processing of long dsRNAs in Drosophila 
melanogaster embryo lysate (2). Briefly, 5' 
and 3' adapter molecules were ligated to the 
ends of a size-fractionated RNA population, 
followed by reverse transcription polymerase 
chain reaction (PCR) amplification, con-
catamerization, cloning, and sequencing. 
This method, originally intended to isolate 
siRNAs, led to the simultaneous identifica-
tion of 16 novel 20- to 23-nt short RNAs, 
which are encoded in the D. melanogaster 
genome and are expressed in 0- to 2-hour 
embryos (Table 1). The method was adapted 
to clone RNAs in a similar size range from 
HeLa cell total RNA (15), which led to the 
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Fig. 1. Expression of 
miRNAs. Representa- A miR-I miR-2b miR-6 B miR-I6 miR-20 miR-26b 
tive examples of &'a ''3 9' ;a 8.3 .$8222 ,, 8 -+ @ a 
Northern blot analy- r v 2&3qr 0 $ 
sis are depicted (27). $?&&a $&& *3&&$ 
The position of 76-nt 
val-tRNA is indicated 
on the blots; 55 rRNA -
serves as a loading 76 nt- -
control. (A) Northern 76 nt -
blots of total RNA 
isolated from staged 
populations of D. 
melanogaster, probed r * * & c ) e (  
for the indicated 
miRNA. E, embryo; L. • * 4. & @ 

8 
larval stage; P, pupa; 
A, adult; 52, Schnei-
der-2 cells. (B) North- 5s r ~ ~ ~ m5s rRNA-
ern blotsof total RNA 
isolated from HeLa let-7 4 1 let-7a b # 6 
cells, mouse kidneys. 
adult zebrafish, frog 
ovaries, and 52 cells, probed for the indicated miRNA. 

Fig. 2. Cenomic orga- A B 
nization of miRNA Ir2R -D3 .10-- 9,17 
gene clusters. The 
precursor structure is mir-4 mir-5 mir-6-1 mir-6-2 mir-6-3 let-7a-1 let-7fl  

indicated as a box, 
and the location of -2L 
the miRNA within the mir-2b-2 mir-2a-l mir-2a-2 
precursor is shown in 
black; the chromo--3R 
somal location is also mir-13a rnir-13b-l 

1 1 3 

indicatedto the right. mir-17 mir-18 mir-19a mir-20 mir-196-1 

(A) D. melanogaster miRNA gene clusters. (B)Human miRNA gene clusters. The cluster of 
let-7a-7 and let-7f-7 is separated by 26,500 nt from a copy of let-7don chromosomes 9 and -19
17. A cluster of let-7a-3 and let-7b, separated by 938 nt on chromosome 22, is not illustrated. 

mir-23 mir-24-2 - l0Ont 
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identification of 21 novel human micro- The expression and size of the cloned, en- sometimes observed. Interestingly, miR- 1, 
RNAs (Table 2), thus providing further evi- dogenous short RNAs were also examined by miR-3 to ~ L R - 6 ,and miR-8 to miR-11 were 
dence for the existence of a large class of small Northem blotting (Fig. 1 and Tables 1 and 2). completely absent from cultured S2 cells, 
RNAs with potential regulatory roles. Because For analysis of D. melanogaster RNAs, total whereas miR-2, miR-7, miR-12, and miR-13 
of their small size, and in agreement with the RNA was prepared from different developmen- were present in S2 cells, therefore indicating cell 
authors of two related papers in this issue (1  6, tal stages, as well as from cultured Schneider-2 type-specific miRNA expression. miR- 1, miR- 
17), we refer to these novel RNAs as micro- (S2) cells, whlch were origmally derived from 8, and miR-12 expression patterns are similar to 
RNAs (miRNAs). The miRNAs we studied 20- to 24-hour D. melanogaster embryos (18) those of lin-4 stFNA in C. elegans, as their 
are abbreviated as miR-1 to miR-33, and the (Fig. 1 and Table 1). miR-3 to miR-7 are ex- expression is strongly up-regulated in larvae and 
genes encoding miRNAs are named mir-1 to pressed only during embryogenesis and not at sustained to adulthood (19).miR-9 and miR-11 
mir-33. Highly homologous miRNAs are re- later developmental stages. The temporal ex- are present at all stages but are strongly reduced 
ferred to by the same gene number, but followed pression of miR-1, miR-2, and miR-8 to miR- 13 in the adult, which may reflect a maternal con- 
by a lowercase letter; multiple genomic copies was less restricted. These miRNAs were ob- tribution from germ cells or expression in one 
of a mir gene are annotated by adding a dash served at all developmental stages, and signifi- sex only. 
and a number. cant variations in the expression levels were The mir-3 to mir-6 genes are clustered (Fig. 
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Fig. 3. Predicted precursor structures of D. melanogaster miRNAs. RNA 
secondary structure prediction was performed using mfold version 3.1 

A A U AAAC

mir-6-3 S'CAAA AGAAWAACGGWGCWG UGAUOUAG W O  \ 	 (32)and manually refined t o  accommodate C/U wobble base pairs in the 
hetical segments. The miRNA sequence is underlined. The actual size of GULN UWWUCWGUCGGUGAC =AW AAC u 

G u ACUC 	 the stem-loop structure is not known experimentally and may be slightly 
shorter or longer than represented. Multicopy miRNAs and their corre- 
sponding precursor structures are also shown. 
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Fig. 4. Predicted precursor structures of human miRNAs. For legend, see Fig. 3. 
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Table 1. D, melanogaster miRNAs. The sequences given represent the most miRNA as a percentage relative t o  all identified miRNAs is indicated. Results 
abundant, and typically longest, miRNA sequence identified by cloning of Northern blotting of total RNA isolated from staged populations of D. 
miRNAs frequently vary in length by one or two nucleotides at their 3' melanogaster are summarized. E, embryo; L, larval stage; P, pupa; A, adult; SZ, 
termini. From 222 short RNAs sequenced, 69 (31%) corresponded to  Schneider-2 cells. The strength of the signal within each blot is represented 
miRNAs, 103 (46%) t o  already characterized functional RNAs (rRNA, 7SL from strongest (+++) to  undetected (-). let-7 stRNA was probed as the 
RNA, and tRNA), 30 (14%) t o  transposon RNA fragments, and 20 (10%) control. CenBank accession numbers and homologs of miRNAs identified by 
sequences had no database entry. The frequency for cloning a particular database searching in other species are provided in (27). 

E E L1 

rniRNA Sequence (5' to 3') 

Freq. 
0 to 0 to + L3 P A 


(%) 3 hours 6 hours L2 


miR-1 UGGAAUGUAAAGAAGUAUGCAC 32 + + +++ +++ ++ +++ 
miR-2a* UAUCACAGCCACCUUUGAUCACC 3 
miR-2b* UAUCACAGCCAGCUUUGAGCACC 3 ++ + + + + +++ ++ + 
miR-3 UCACUGGGCAAAGUGUGUCUCA 9 +++ +++ - - - -

rniR-4 AUAAAGCUAGACAACCAUUGA 6 +++ +++ - - - -
miR-5 AAAGGAACGAUCGUUGUGAUAUG 1 +++ ++ + +/- +/- - -

miR-6 UAUCACAGUGGCUGUUCUUUUU 13 + + + ++ + +/- +/- - -

miR-7 UGGAAGACUAGUGAUUUUGUUCU 4 +++ ++ +/- +/- +/- 1-
rniR-8 UAAUACUGUCAGGUAAAGAUCUC 3 +1- +1- +++ +++ + +++  
rniR-9 UCUUUGGUUAUCUAGCUGUAUGA 7 +++ + + +++ +++ +++ +/-
miR-10 ACCCUGUAGAUCCGAAUUUCU 1 + + ++ +++ +/- + 
rniR-11 CAUCACAGUCUGAGUUCUUCC 7 +++ +++ +++ +++ +++ + 
rniR-12 UGAGUAUUACAUCAGGUACUCCU 7 + + ++ ++ + ++ + 
miR-13a* UAUCACAGCCAUU UUGACGACU 1 +++ +++ +++ +++ + ++ + 
rniR-13ba UAUCACAGCCAUUUUGAUGACU 0 
miR-14 UCAGUCUUUUUCUCUCUCCUA 1 - - - - - -

let-7 UGAGGUAGUAGGUUGUAUACUU 0 - - - - +++ + + -
*Similar miRNA sequences are difficult to distinguished by Northern blotting because of potential cross-hybridization of probes. 

2A), and mir-6 is present as triple repeat with sion of mir-1 was detected by Northern blotting of miRNAs from D, melanogaster and humans 
slight variations in the mir-6 precursor sequence in total RNA from adult zebrafish and C. el- are fairly incomplete and that many more mi- 
but not in the miRNA sequence itself. The ex- egans, but not in total RNA from HeLa cells or RNAs remain to be discovered, which will 
pression profiles of miR-3 to miR-6 are highly mouse ladney (Table 2) (20). Interestingly, al- provide the missing evolutionary I d s .  
similar (Table I), whch suggests that a single though mir-l and let-7 are both expressed in lin-4 and let-7 stRNAs were predicted to be 
embryo-specific precursor transcript may give adult flies (Fig. 1A) (8) and are both undetected excised from longer transcripts that contain 
rise to the different miRNAs or that the same in S2 cells, only let-7 is detectable in HeLa cells. stem-loop structures about 30 base pairs in 
enhancer regulates miRNA-specific promoters. Thls represents another case of tissue-specific length (6, 8). Database searches for newly iden- 
Several other fly miRNAs are also found in expression of an miRNA and indicates that tified rmRNAs revealed that all miRNAs are 
gene clusters (Fig. 2A). miRNAs may play a regulatory role not only in flanked by sequences that have the potential to 

The expression of HeLa cell rmR-15 to miR- developmental timing but also in tissue specifi- form stable stem-loop structures (Figs. 3 and 4). 
33 was examined by Northern blotting using cation. miR-7 homologs were found by database In many cases, we were able to detect the pre- 
HeLa cell total RNA, in addition to total RNA searches of the mouse and human genomes and dicted precursors (about 70 nt) by Northern 
prepared from mouse kidney, adult zebrafish, of expressed sequence tags (ESTs). Two mam- blotting (Fig. 1). Some miRNA precursor se- 
Xenopus laevis ovary, and D. melanogaster S2 malian miR-7 variants are predicted by se- quences were also identified in mammalian 
cells (Fig. 1B and Table 2). miR-15 and miR-16 quence analysis in mice and humans and were cDNA (EST) databases (21),indicating that pri- 
are encoded in a gene cluster (Fig. 2B) and are detected by Northern blotting in HeLa cells and mary transcripts longer than 70-nt stem-loop 
detected in mouse kidney, adult zebrafish, and adult zebrafish, but not in mouse kidney (Table precursors also exist. We never cloned a 22-nt 
very weakly in frog ovary, which may result 2). Similarly, we identified mouse and human RNA complementary to any of the newly iden- 
from miRNA expression in somatic ovary tissue miR-9 and miR-10 homologs by database tified miRNAs, and it is as yet unknown how the 
rather than in oocytes. mir-17 to mir-20 are also searches but only detected mir-10 expression in cellular processing machmery distinguishes be- 
clustered (Fig. 2B) and are expressed in HeLa mouse kidney. tween an &A and its complementary strand. 
cells and adult zebrafish, but undetectable in The identification of evolutionarily related Comparative analysis of the precursor stem- 
mouse kidney and frog ovary (Fig. 1 and Table miRNAs, which have already acquired multiple loop structures indicates that the loops adjacent 
2), and therefore represent a likely case of tis- sequence mutations, was not possible by stan- to the base-paired miRNA segment can be lo- 
sue-specific miRNA expression. dard bioinfomatic searches. Direct comparison cated on either side of the miRNA sequence 

The majority of vertebrate and invertebrate of the D, melanogaster miRNAs with the hu- (Figs. 3 and 4), suggesting that neither the 5' nor 
miRNAs identified in this study are not related man miRNAs identified an ll-nt segment the 3' location of the stem-closing loop is the 
by sequence, but a few exceptions do exist and shared between D. melanogaster miR-6 and determinant of miRNA excision. It is also un- 
are similar to results previously reported for HeLa miR-27, but no further relationships were likely that the structure, length, or stability of the 
let-7 RNA (8). Sequence analysis of the D. detected. It is possible that most miRNAs only precursor stem is the critical determinant he-
melanogaster miRNAs revealed four such in- act on a single target and therefore allow for cause the base-paired structures are frequently 
stances of sequence conservation between inver- rapid evolution by covariation. Highly con- imperfect and interspersed by GllJ wobbles and 
tebrates and vertebrates. miR- 1 homologs are served miRNAs may act on more than one less stable, non-Watson-Crick base pairs such 
encoded in the genomes of C. elegans, C. brigg- target sequence and therefore have a reduced as CIA, Urn, Cm,  and MA. Therefore, a se- 
sae, and humans and are found in cDNAs from probability for evolutionary drift by covariation quence-specific recognition process is a likely 
zebrafish, mice, cows, and humans. The expres- (8). An alternative interpretation is that the sets determinant for miRNA excision, perhaps me- 
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Table 2. Human miRNAs. From 220 short RNAs sequenced, 100 (45%) corresponded to miRNAs, 53 (24%) to already characterized functional RNAs (rRNA, 
snRNA, and tRNA), and 67 (30%) of the sequences had no database entry. Results of Northern blotting of total RNA isolated from different vertebrate species 
and S2 cells are indicated. For legend, see Table 1. 

Freq. HeLa Mouse Adult FrogSequence (5' to 3') (%I cells kidney fish ovary 

let-7a* UCACCUACUACCUUCUAUACUU 10 +++ +++ 
let-7b* UCACCUACUACCUUCUCUCCUU 13 
let-7c* UCACCUACUACCUUCUAUCCUU 3 
let-7d* ACACCUACUACCUUCCAUACU 2 +++ ++ + 
let-7e* UCACCUACCACCUUCUAUACU 2 +++ + + + 
let-7f* UCACCUACUACAUUCUAUACUU 1 
miR-15 UACCACCACAUAAUCCUUUCUC 3 +++ ++ 
miR-16 UACCACCACCUAAAUAUUCCCC 10 +++ + 
miR-17 ACUCCACUCAACCCACUUCU 1 +++ -
miR-18 UAACCUCCAUCUACUCCACAUA 2 +++ -
miR-19a* UCUCCAAAUCUAUCCAAAACUCA 1 +++ -
miR-19b* UCUCCAAAUCCAUCCAAAACUCA 3 
miR-20 UAAACUCCUUAUACUCCACCUA 4 +++ -
miR-21 UACCUUAUCACACUCAUCUUCA 10 +++ + 
miR-22 AACCUCCCACUUCAACAACUCU 10 +++ +++ 
miR-23 AUCACAUUCCCACCCAUUUCC 2 +++ +++ 
miR-24 UCCCUCACUUCACCACCAACAC 4 ++ +++ 
miR-25 CAUUCCACUUCUCUCCCUCUCA 3 +++ + 
miR-26a* UUCAACUAAUCCACCAUACCCU 2 + ++ 
miR-26b* UUCAACUAAUUCACCAUACCUU 1 
miR-27 UUCACACUCCCUAACUUCCCCU 2 ++ + +++ 
miR-28 AACCACCUCACACUCUAUUCAC 2 ++ + +++ 
miR-29 CUACCACCAUCUCAAAUCCCUU 2 + +++ 
miR-30 CUUUCACUCCCAUCUUUCCACC 2 +++ +++ 
miR-31 CCCAACAUCCUCCCAUACCUC 2 +++ -
miR-32 UAUUCCACAUUACUAACUUCC 1 - -
miR-33 CUCCAUUCUACUUCCAUUC 1 - -
miR-1 UCCAAUCUAAACAACUAUCCAC 0 - -
miR-7 UCCAACACUACUCAUUUUCUUCU 0 + -
miR-9 UCUUUCCUUAUCUACCUCUAUCA 0 - -
miR-10 ACCCUCUACAUCCCAAUUUCU 0 - + 
*Similar miRNA sequences are difficult t o  distinguish by Northern blotting because of potential cross-hybridization of probes. 
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An Abundant Class of Tiny 

RNAs with Probable Regulatory 

Roles in Caenorhabditis elegans 

Nelson C. Lau, Lee P. Lim, Earl G. Weinstein, David P. Bartel* 

Two small temporal RNAs (stRNAs), [in-4 and let-7, control developmental 
timing in Caenorhabditis elegans. We find that these two regulatory RNAs are 
members of a large class of 21- to 24-nucleotide noncoding RNAs, called 
microRNAs (miRNAs). We report on 55 previously unknown miRNAs in C. 
elegans. The miRNAs have diverse expression patterns during development: a 
let-7 paralog is temporally coexpressed with let-7; miRNAs encoded in a single 
genomic cluster are coexpressed during embryogenesis; and still other miRNAs 
are expressed constitutively throughout development. Potential orthologs of 
several of these miRNA genes were identified in Drosophila and human ge- 
nomes. The abundance of these tiny RNAs, their expression patterns, and their 
evolutionary conservation imply that, as a class, miRNAs have broad regulatory 
functions in animals. 

Two types of short RNAs, both about 21 to 
25 nucleotides (21-25 nt) in length, serve as 
guide RNAs to direct posttranscriptional reg- 
ulatory machinery to specific mRNA targets. 
Small temporal RNAs (stRNAs) control de- 
velopmental timing in Caenorhabditis el-
egans (1-3). They pair to sites within the 3' 
untranslated region (3' UTR) of target 
mRNAs, causing translational repression of 
these mRNAs and triggering the transition to 
the next developmental stage (1-5). Small 
interfering RNAs (siRNAs), which direct 
mRNA cleavage during RNA interference 
(RNAi) and related processes, are the other 
type of short regulatory RNAs (6-12). Both 
stRNAs and siRNAs are generated by pro- 
cesses requiring Dicer, a multidomain protein 
with tandem ribonuclease I11 (RNase 111) do- 
mains (13-15). Dicer cleaves within the dou- 
ble-stranded portion of precursor molecules 
to yield the 21-25 nt guide RNAs. 

lin-4 and let-7 have been the only two 
stRNAs identified, and so the extent to which 
this type of small noncoding RNA normally 
regulates eukaryotic gene expression is only 
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beginning to be understood (1-5). RNAi-
related processes protect against viruses or 
mobile genetic elements, yet these processes 
are known to normally regulate only one 
other mRNA, that of Drosophila Stellate 
(1620). To investigate whether RNAs re-
sembling stRNAs or siRNAs might play a 
more general role in gene regulation, we iso- 
lated and cloned endogenous C. elegans 
RNAs that have the expected features of Di- 
cer products. Tuschl and colleagues showed 
that such a strategy is feasible when they 
fortuitously cloned endogenous Drosophila 
RNAs while cloning siRNAs processed from 
exogenous dsRNA in an embryo lysate (12). 
Furthermore, other efforts focusing on longer 
RNAs have recently uncovered many previ- 
ously unknown noncoding RNAs (21, 22). 

Dicer products, such as stRNAs and 
siRNAs, can be distinguished from most oth- 
er oligonucleotides that might be present in 
C. elegans by three criteria: a length of about 
22 nt, a 5'-terminal monophosphate, and a 
3'-terminal hydroxyl group (12, 13, 15). Ac- 
cordingly, a procedure was developed for 
isolating and cloning C. elegans RNAs with 
these features (23). Of the clones sequenced, 
330 matched C. elegans genomic sequence, 
including 10 representing lin-4 RNA and 1 
representing let-7 RNA. Another 182 corre- 
sponded to the Escherichia coli genomic se- 
quence. E. coli RNA clones were expected 
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because the worms were cultured with E. col~ 
as the primary food source. 

hie hundred of the 330 C: elepans-
clones have the potential to pair with nearby 
genomic sequences to form fold-back struc- 
tures resembling those thought to be needed 
for Dicer processing of lin-4 and let-7 
stRNAs (Fig. 1 )  (24).These 300 clones with 
predicted fold-backs represent 54 unique se- 
quences: lin-4, let-7, and 52 other RNAs 
(Table 1). Thus, lin-4 and let-7 RNAs appear 
to be members of a larger class of noncoding 
RNAs that are about 20-24 nt in length and 
are processed from fold-back structures. We 
and the two other groups reporting in this 
issue of the journal refer to this class of tiny 
RNAs as microRNAs, abbreviated miRNAs, 
with individual miRNAs and their genes des- 
ignated miR-# and mir-#, respectively (25. 
26). 

We propose that most of the miRNAs are 
expressed from independent transcription 
units, previously unidentified because they 
do not contain an open reading frame (ORF) 
or other features required by current gene- 
recognition algorithms. No miRNAs matched 
a transcript validated by an annotated C. rl-
egans expressed sequence tag (EST), and 
most were at least 1 kb from the nearest 
annotated sequences (Table 1). Even the 
miRNA genes near predicted coding regions 
or within predicted introns are probably ex- 
pressed separately from the annotated genes. 
If most miRNAs were exvressed from the 
same primary transcript as the predicted pro- 
tein, their orientation would be predominant- 
ly the same as the predicted mRNA, but no 
such bias in orientation was observed (Table 
1). Likewise, other types of RNA genes lo- 
cated within C elegans intronic regions are 
usually expressed from independent tran-
scription units (27). 

Whereas both lin-4 and let-7 RNAs reside 
on the 5' arm of their fold-back structures (I .  
3), only about a quarter of the other miRNAs 
lie on the 5' arm of their proposed fold-back 
structures, as exemplified by miR-84 (Table 
1 and Fig. 1A). All the others are on the 3' 
arm, as exemplified by miR-1 (Table 1 and 
Fig. 1B). This implies that the stable product 
of Dicer processing can reside on either arm 
of the precursor and that features of the 
miRNA or its precursor-other than the loop 
connecting the two arms-must detemline 

858 	 26 OCTOBER 2001 VOL 294 SCIENCE www.sciencemag.org 

mailto:dbartel@wi.mit.edu

