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The 3.2 ? 0.2 millimeter per year global mean sea level rise observed by the 
TopexIPoseidon satellite over 1993-98 is fully explained by thermal expansion 
of the oceans. For the period 1955-96, sea level rise derived from tide gauge 
data agrees wel l  w i th  thermal expansion computed at  the same locations. 
However, we find that subsampling the thermosteric sea level a t  usual tide 
gauge positions leads t o  a thermosteric sea level rise twice as large as the "true" 
global mean. As a possible consequence, the 20th century sea level rise esti- 
mated from tide gauge records may have been overestimated. 

Coastal tide gauges have provided the main 
technique by whlch sea level change has been 
measured during the past century. For about a 
decade, sea level has been monitored world- 
wide by altimeter satellites, in particular by 
TopexRoseidon, with global coverage, high 
spatio-temporal resolution, and direct tie to 
Earth's center of mass (1). The global mean sea 
level rise observed by TopexRoseidon amounts 
to 2.5 rt 0.2 &year between January 1993 
and December 2000 (2). On time scales longer 
than 1 year, global mean sea level change re- 
sults from two main causes: (i) volume change 
due to seawater density change in response to 
temperature and salinity variations (the two pa- 
rameters having opposite effects on sea level) 
and (ii) mass change due to exchange of water 
with atmosphere and continents, including gla- 
ciers and ice sheets, through precipitation, evap- 
oration, river runoff, and ice melting. The re- 
cent availability of long time series of global 
ocean temperatures down to 3000 m, for the 
period 1945 through 1998 (3),  has made it 
possible to quantitatively estimate the thermal 
contribution to the sea level change observed 
during the 1990s. 

We used the yearly mean temperature data 
(available for the upper 500 m only) to com- 
pute the thermosteric sea level (4) and com- 
pared it with the yearly averaged sea level 
derived from TopedPoseidon (Fig. 1). The 
thermosteric sea level rise for 1993-98 
amounts to 3.1 ? 0.4 mmlyear, in agreement 
with the 3.2 ? 0.2 m d y e a r  rate measured by 
TopedPoseidon over the same time span (5). 
The residual sea level (observed minus ther- 
mosteric sea level; also shown in Fig. 1) 
presents a small, not significant, trend of 
0.2 5 0.2 mmlyear. Apart from uncertainties 
in observed and computed sea level rise, the 
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residual trend would reflect unknown contri- 
butions from three sources: deep (500 to 
3000 m) thermosteric change, water mass 
addition to the oceans due to exchange with 
atmosphere and continents, and halosteric 
(i.e., due to salinity change) variations. The 
above results suggest that these components 
contribute negligibly (less than 5%) to the 
observed sea level rise. The agreement be- 
tween the TopedPoseidon-observed and 
thermosteric sea level trends (2, 4 )  for 1993- 
98 is striking, particularly in the tropics and 
Northern Hemisphere (Fig. 2). The ther-
mosteric trend map reproduces well the East- 
ern Pacific sea level rise associated with the 
1997-98 El Nifio-Southern Oscillation 
(ENSO) event, as well as the Western Indian 
Ocean rise. Sea level patterns in the equato- 
rial and Northern Atlantic also are well re- 
produced in shape and magnitude by the ther- 
mosteric map. Some discrepancy is observed 
in the southern oceans, where the positive 
trends observed by TopexJPoseidon ( 6 )  are 
larger than the thermosteric contribution, a 
likely consequence of sparse temperature 
coverage in remote southern regions. The 
quantitative comparison presented here 
shows that, for recent years, warming of the 
upper oceans almost fully accounts for the 
global mean sea level rise observed by 
TopedPoseidon. Thus, other climatic contri- 

Fig. 1. Global mean sea level 
curves. Dotted curve, observed 
at 10-day interval by TopexlPo- 
seidon for 1993-2000. Solid 
curve, yearly averaged sea level 
from TopexIPoseidon. Dashed 
curve, thermosteric component 
computed from global tempera- 
ture data (3) down t o  500-m 
depths for 1993-98. Dashed-
dotted curve, residual (Topex1 
Poseidon minus thermosteric) 
sea level. 

butions to the 1993-98 observed sea level 
rise, due to water mass exchange with the 
atmosphere and with continental reservoirs as 
well as deep ocean (below 500 m) thermal 
effects and salinity contribution, may global- 
ly counterbalance each other. 

The third assessment report of the Intergov- 
ernmental Panel on Climate Change (IPCC) (7) 
estimates the various factors that have contrib- 
uted to the 20th century sea level rise. The 
largest contribution (0.7 &year sea level rise) 
arises from thermal expansion due to warming 
of the oceans that malnly occurred since the 
1950s (8).Melting of continental glaciers pro- 
duces 0.2 to 0.4 &year sea level rise (7). 
Estimated Greenland and Antarctica mass im- 
balance (accounting for a long-term readjust- 
ment since Last Glacial Maximum plus a cli- 
mate-related response) contributes 0 . 2  to 0.6 
rnmjyear (7). The least certain contribution is 
the change in terrestrial water storage that re- 
sults partly from human activities. which is in 
the range of 1 . 1  to t 0.4 mm'year with a 
median value of -0.35 &year (i.e., corre- 
sponding to sea level drop) (7). The s u n  of 
these contributions ranges from -0.8 to 2.2 
mmlyear, with a median value of 0.7 &year 
(7). Values for the 20th century sea level rise 
based on tide gauges records, published during 
the 1990s, are in the range 1 to 2 &year (7).  
The most recent global analyses (9,10), which 
use the longest tide gauge records available 
( 2 7 0  years), report a rate of rise closer to 2 
mmlyear: 1.71 -i- 0.55 rnmlyear (9)and 1.84 -+ 
0.35 &year after correcting for postglacial 
rebound (10). The third IPCC report (7) adopts 
a best estimate of 1.5 ? 0.5 mm/year for the 
observed 20th century sea level rise and notes 
that the sum of climate-related components is 
low compared with the observational estimates. 
In effect. these observed values ( 1.5 &year or 
1.8 mmlyear) are more than twice as large as 
the revised estimate of total climate conhibu- 
tions, although there is complete overlap be- 
tween the range of the sum of contributions (7)  
and the observed range. It would appear that 
either the climate-related processes causing sea 
level rise have been underestimated or thc sea 
level rise observed with tide gauges is biased 
toward values too high. The latter possibility 
may arise from the fact that tide gauges are 
located at continents or island coastlines and 
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hence do not globally sample the spatial varia- for the period 1955-96, using the 5-year 
tions of the sea level change. The recent avail- me? temperature data over the depth range 0 
ability of global sea temperature data (3) can to 3000 m (3). The 60°S to 60°N average 
help address the second possibility. shows a mean thermosteric trend of 0.50 + 

We computed the thermosteric sea level, 0.05 &year (Fig. 3). To teSt the agreement 

A Sea Level Trends from Topex-Poseidon(1993-1998) 
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Fig. 2. Map of the geographical distribution of sea level trends over 1993-98 computed from 
TopexIPoseidon altimetry (A) and from the thermosteric sea level data (B). 

Fig. 3. Mean sea level curves for 
1955-96. Dashed curve, global 
mean thermosteric component 
computed with data from (3) 
down to 3000-m depths. Dotted 
curve, pseudo global mean ther-
mosteric sea level computed by 
subsampling the global data set 
at the 25 tide gauge sites. Solid 
curve, observed sea level curve 
based on the PSMSL records at 
the 25 tide gauge sites. 

between this average and the value that 
would be calculated by using only'data from 
tide gauge positions, we computed a pseudo 
"global mean" steric sea level time series by 
subsamplingthe global thermosteric sea level 
grid at locations close to tide gauge sites (11), 
using 25 of the 27 stations selected by Doug-
las (9). The pseudo global mean thermosteric 
sea level time series, superimposed to the 
"true" global mean in Fig. 3, is 1.4 + 0.10 
ndyear ,  a value more than two times as 
large as the true global mean trend (0.5 + 
0.05 ndyear). Twenty-three out of the 25 
sites are located in positive trend regions 
(Fig. 4). Considering the substantial regional 
variations in thermosteric trends, it appears 
clear that these sites fail to correctly sample 
the global variation and that averaging ther-
mosteric sea level at these sites is not repre-
sentative of the global mean. 

We further checked whether the computed 
thermosteric sea level rise correctlyreproduces 
the tide gaugederived sea level rise. For that 
purpose, we considered tide gauge records from 
the Permanent Service for Mean Sea Level 
(PSMSL) (12) at the 25 sites. The "average" 
tide gaugederived sea level curve over 1955-
96, after performing regional grouping (13), is 
shown in Fig. 3. The observed (i.e., tide gauge 
derived) mean sea level rise for 1955-96 is 
1.6 + 0.15 d y e a r ,  a value.that agrees well 
with the pseudo global mean thermos@ic rise 
(1.4 +. 0.10 d y e a r ) .  The tide gauge-derived 
sea level curvedisplaysdecadal oscillationsthat 
are smaller in the thermosteric sea level curve. 
Inspection of individual tide gauge records in-
dicates that stations of the northeast U.S. coast 
are largelyresponsible for the observed decadal 
variability, which originates from North Atlan-
tic wind forcing (14). In our computation, we 
did not account for the halosteric component 
because global gridded s d i t y  data are not yet 
available. Antonov et al. (15) showed that the 
halostericcontribution is quite substantialin the' 
subpolar part of the North Atlantic, especially 
in the Labrador Sea, where it nearly counteracts 
the thermosteric contribution. However, in 
terms of global mean, the halosteric sea level 
rise has not exceeded 0.05 mmlyear over the 
past 40 years (15). We checked whether neglect 
of the haliie component when computing the 
steric sea level at the tide gauge sites would 
change our results. At each of the25 stations, 
we computed difference time series of the tide 
gaugederived minus thermosteric sea level 
and fitted a linear trend to these differencetime 
series. The mean difference trend is 0.25 + 
0.14 ndyear, a value that represents an upper 
bound of the neglected halosteric and other 
climatic contributions. 

Our study has demonstratedthat the glob-
al estimate of the thermal expansion compo-
nent is substantially smaller than the value 
obtained if the same field is subsampled at 
the tide gauge positions used to compute the 
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Steric Sea Level Trends for the upper 3000m (1955-1996) 

Fig. 4. Map of the geographical distribution of the1 
with temperature data from (3) down to 3000-m 
25 tide gauges. 

rmosteric sea level trends for 1955-96 computed 
depths. Black triangles show the locations of the 

20th century global mean sea level rise. It is 
generally assumed that spatial variation of 
sea level rise is caused by nonuniformity in 
thermal expansion, other contributions lead- 
ing rapidly to uniform sea level change. Thus, 
the reported difference may reflect an over- 
estimate of the sea level rise for the past 
decades, caused by the uneven distribution of 
the tide gauges and limited geographical sam- 
pling available from historical records. Even 
though the global tide gauge network has 
been considerably extended during the 1990s 
(16), recent sea level rise estimates based on 
the tide gauges still substantially depart from 
the, global mean measured by TopexIPosei- 
don (1 7). Because of temperature data avail- 
ability, we limited our analysis to the second 
half of the 20th century, but it should be 
noted that the mean sea level rise computed 
with this 40-year-long tide gauge record 
agrees well with values based on longer 
records (9,lO). Thus, our conclusion that the 
tide gaugs-derived sea level rise for the past 
few decades has been overestimated possibly 
holds for the whole 20th century. This would 
reconcile observed sea level rise and estimate 
of climate-related contributions (on the order 
of 0.7 mmlyear) as reported by the third IPCC 
assessment report (7). 
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