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We construct a generalization of the quantum Hall effect, where particles move 
in  four dimensional space under a SU(2)  gauge field. This system has a mac- 
roscopic number of degenerate single particle states. At  appropriate integer or 
fractional filling fractions the system forms an incompressible quantum liquid. 
Gapped elementary excitation in  the bulk interior and gapless elementary 
excitations at the boundary are investigated. 

Most strongly correlated systems develop long- 
range order in the ground state. Familiar or- 

Tissue ~ i ~ ~ ~ ~ i ~ ~ ~ h ~ ~ d ~ i ~ l, D~~ dered states include superfluidity, superconduc- ~i~ (  valencia, CAI, ~ 
(MtDNA) was amplified with the use of ND4 primers 
(ArgBL and NAP2H) mussels universal(58-59), 
COI primers (HCO-2198 and LCO-1490) for com-
mensal polychaetes and shrimp (60),universal cyto-
chrome b (Cytb) primers (UCytbl44F and 
UCytb270R) i67)' and 1 6 s - r ~ ~ ~Primers 
(16Sar and 16Sbr) for hairy gastropods and limpets 
(62), The gene of choice for a particular organismwas 
based on published or ongoing molecular systematic 
studies of these Polymerase chain reaction 
(PCR) products were sequenced directly using ABI 
377 or Licor 4000L sequencers (Lincoln, NE), In all 
cases, both forward and reverse strands were se-
quenced and aligned. Kairei mussels ( N  = 6) and 
shrimp (N=6) were compared with mussel and 
shrimp sequences from Pacific and Atlantic localities 
(7, 49; Y. Won, unpublished data). The commensal 
polychaete (N = 2) was compared with individuals 
from Pacific and Atlantic localities (50; S. Hourdez, P. 
Chevaldonne, unpublished data). Bythograeid crabs 
(N = 9) were compared with individuals from Pacific 
and Atlantic localities (L. Hurtado, unpublished data). 
Hairy gastropods (N = 2) were compared with indi- 
viduals from the Mariana Trough (N= 5) (S. Goffredi, 
unpublished data). Lepetodrilus limpets (N = 2) were 
compared with specimens from other Pacific locali- 

tivity, antiferromagnetism, and charge density 
wave (I).However, there are special quantum 
disordered ground states with fractionalized el- 
ementary excitations. In one-dimensional (ID) 
systems; Bethe's Ansatz (2) gives exact 
ground-state wave functions of a class of Ham- 
iltonians, and the elementary excitations are 
fractionalized objects called spinons and ho- 
lons. In the 2D quantum Hall effect (QHE) (3, 
4), Laughlin's wave function (3) describes an 
incomp~essible quantum fluid with fractionally 
charged elementary excitations. This incom- 
pressible liquid can also be described by a 
Chem-Simons-Landau-Ginzburg field theory 
(9,whose long-distance limit depends only on 
the topology but not on the metric of the un-

Department o f  Physics, Stanford University, Stanford, 
CA 94305. USA. Center for Advanced Study, Tsinghua 
University, Beijing, China. 

derlying space (6). These two special quantum 
disordered ground states are the focus of much 
theoretical and experimental studies, because 
they give deep insights into the interplay be- 
tween quantum correlations and dimensionality 
and into how this interplay can give rise to 
fractionalized elementary excitations. 

In view of their importance, it is certain- 
ly desirable to generalize these quantum 
wave functions to higher dimensions. How- 
ever, despite repeated efforts, the Bethe's 
Ansatz solutions have not yet been gener- 
alized to dimensions higher than one. 
Laughlin's wave function uses properties 
that seem to be special to the 2D space. In 
this work, we shall report the generaliza- 
tion of the quantum Hall system to four 
space dimensions, and this system shares 
many compelling similarities with the 2D 
counterpart. In the 2D QHE, the charge 
current is carried in a direction perpendic- 
ular to the applied electric field (and also 
perpendicular to the magnetic field, which 
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is applied normal to the 2D electron gas). In 
four space dimensions, there are three inde- 
pendent directions normal to the electric 
field, and there appears to be no unique di- 
rection for the current. A crucial ingredient of 
our generalization is that the particles also 
carry an internal SU(2) spin degree of fiee- 
dom. Because there are exactly three inde- 
pendent directions for the spin, the particle 
current can be uniquely carried in the direc- 
tion where the spins point. At special filling 
factors, the quantum disordered ground state 
of our 4D QHE is separated from all excited 
states by a finite energy gap, and the lowest 
energy excitations are fractionally charged 
quasi-particles. 

Although all excitations have finite en- 
ergy gaps in the bulk interior, elementary 
excitations at the three dimensional bound- 
ary of this quantum field are gapless, in 
analogy with the edge states of the quantum 
Hall effect (7-9). These boundary excita- 
tions could be used to model the relativistic 
elementary particles, such as photons and 
gravitons. In contrast to conventional quan- 
tum field theory approach, this model has 
the advantage that the short-distance phys- 
ics is finite and self-consistent. In fact, the 
magnetic length in this model provides a 
fundamental lower limit on all length 
scales. This feature shares similarity to 
noncommutative quantum field theory and 
string theory of elementary particles. 

A 4D generalization of the quantum 
Hall problem. In the QHE problem, it is 
advantageous to consider compact spheri- 
cal spaces that can be mapped to the flat 
Euclidean spaces by standard stereographi- 
cal mapping (10). Eigenstates in the QHE 
problem are called Landau levels, and we 
first review the lowest Landau level (111) 
defined on the 2D sphere, denoted by S2. A 
point X,  on S2 with radius R can be de- 
scribed by dimensionless vector coordi-
nates xI = XJR, with i = 1, 2, 3, which 
satisfy .xf = 1. However, S%as a special 
property that one can also take the "square 
root" of the vector coordinate xithrough the 
introduction of the complex spinor coordi- 
nates +cT, with a = 1, 2. These spinor 
coordinates are defined by 

where g are the three Pauli spin matrices. If 
there is a magnetic monopole of strength g 
at the center of SZ,  satisfying the Dirac 
quantization condition eg = I = integer or 
half integer, then the normalized eigenfunc- 
tions in the 111 are just the algebraic prod- 
ucts of the spinor coordinates 

H e r e m  = -I, -I + 1, . . .  I - 1 , I ,  
therefore the ground state is 21 + 1 fold 
degenerate. Any states in the 111 can be ex- 
panded in terms of a homogeneous polyno- 
mial of +, and +, with degree 21. Notice that 
the conjugate coordinate 6" does not enter 
the wave function in the 111. 

We see that the crucial algebraic structure 
of the QHE problem is the fractionalization 
of a vector coordinate into two spinor coor- 
dinates. Therefore, in seeking a higher di- 
mensional generalization of the QHE prob- 
lem, we need to find a proper generalization 
of Eq. 1. As the generalization of the three 
Pauli matrices is the five 4 X 4 Dirac matri- 
ces r,, satisfying the Clifford algebra {T,, 
r,} = 26,,, we generalize Eq. 1 to 

x = r T %\u, = 1 (3) 

Here, \Va is a four-component complex spinor 
with cr = 1. 2, 3, 4, and xu is a five-compo- 
nent real vector. From the normalization con- 
dition of the q spinor it may be seen that x: 
= 1,  therefore, Xa = Rx, describes a point of 
the 4D sphere S 4  with radius R. From this 
heuristic reasoning, one may hope to find a 
4D generalization of the QHE problem, 
where the wave functions in the ground states 
are described by the products of quspinors, 
in a natural generalization of Eq. 2. Equations 
1 and 3 are known in the mathematical liter- 
ature as the first and the second Hopf maps 
(11). The problem now is to find a Hamilto- 
nian for which these are the exact ground 
state wave functions. 

An explicit solution to Eq. 3 can be ex- 
pressed as 

where (u,,  11,) is an arbitrary two-component 
complex spinor satisfying LI_LI_  = 1 .  Any 
SU(2) rotation on 11" preserves the normal- 
ization condition and maps to the same point 
xa on S 4 .  From the explicit form of q m ,  one 
can compute the geometric connection (Ber- 
ry's phase) qudWu ( l l ) ,  where the differen- 
tiation operator d acts on the vector coordi- 
nates .u,, subject to the condition sadxu = 0.-
One finds q u d T a  = LIm(a,d.u,)m,,u (,,, a, = 
0, and 

where I,  = a)2 and qLY is also known as the 
t'Hooft symbol. aw is the SU(2) gauge po- 
tential of a Yang monopole defined on S4 
(12). Upon a conformal transformation 
from 5"' to the 4D Euclidean space R4 (13). 
this gauge potential is transformed to the 
instanton solution of the SU(2) Yang-Mills 
theory (14). We shall call [ a SU(2) isospin 
matrix, and the gauge potential defined in 
Eq. 6 can be generalized to an arbitrary 
representation I of the SU(2) Lie algebra [I,. 
$1 = ~ E , ~ ~ I ~The gauge field strength can be 
calculated from the form of the gauge po- 
tential. From the covariant derivative DJ = 
8, + a,, we define the field strength as,&, = 

[D,, Db]. Both aa and f,,are matrix valued 
and can be generally expressed in terms of 
the isospin components aa = -ia:), and 
,fib= -ifAbI,. In terms of these components. 
we find.f;, = -(1 + x,)aL and f L Y  = sva: 
- xFa: - qLd In addition to the dimen- 

sionless quantities a, and f,,,we shall 
sometimes also use dimensionful quantities 
defined by A, = Rp'a,(XIR), and $,, = 

R-2fab(XIR). 
With this introduction and motivation. 

we are now in a position to introduce the 
Hamiltonian of our quantum mechanics 
problem. The symmetry group of 5"' 1s 
SO(5). generated by the angular momentum 
operator LiP,' = -i(x,iJ, - x,da) The Ham- 
iltonian of a single particle moving on Si 

h 

can be expressed as H = Z,<b(L1:;)2, 

where M is the inertia mass and R is the 
radius of 9.Coupling to a gauge field a, 
may be introduced by replacing aa with the 
covariant derivative Do. Under this replace- 
ment, Lrd becomes ;Iah = -i(;Pb - .u,D,). 
The Hamiltonian of our generalized QHE 
problem is therefore given by 

This Hamiltonian has an important parameter 
I, defined by I f  = 1(1+ l ) ,  which specifies 
the dimension of the SC7(2) representation in 
the potential (Eq. 6). 

Unlike L?, A,, does not satisfy the 
SO(5) commutation relation. However. one 
can define Lab = - $,, which does 
satisfy the SO(5) commutation relation. Al- 
though only a subset of SO(5) irreducible 
representations can be generated from the 
L$,) operators, Yang (15) showed that LC,, 
generates all SO(5) irreducible representa- 
tions. In general, a SO(5) irreducible repre- 
sentation is labeled by two integers ( p ,  q) .  
with p 2 q 2 0. For such a representation. 
the Casimir operator and the dimensional- 

[12 
ity are given by C(p ,  q )  = Z',<, L?,, = ,-
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+ -qL+ 2p + q and d(p ,  q )  = ( 1  + q)( l  +
2 

p - q )  1 + - 1 + --- respectively.3( p;q)  

However, for a given I, these two integers 
are related by p = 21 + q .  One can show 
that A;b = Lib - 21:. There-
fore, for a given I, the energy eigenvalues 
of the Hamiltonian (Eq. 7 )  are given by 

h2 
E ( p  = 2 1  + q ,q )  = = 21~ ~ R Z [ C ( P  

with degeneracy d ( p  = 21 + q ,  q ) .  The 
ground state, which is the lowest SO(5) level 
for a given I ,  is obtained by setting q = 0 ,  

1 
and we see that it is ( p  + l ) ( p + 2) (p + 3) 
fold degenerate. Therefore, the dimension of the 
SU(2) representation plays the role of the mag- 
netic flux, while q plays the role of the Landau 
level index. States with q > 0 are separated 
from the ground state by a finite energy gap. 

Besides the energy eigenvalues and the 
degeneracy, we need to know the explicit 
form of the ground-state wave function. Yang 
(15) did find the wave function for all the ( p ,  
q )  states; however, his solution is expressed 
in a basis that is hard to work with for our 
purpose. Realizing the spinor structure we 
outlined above, we can express the wave 
functions of the lowest SO(5) levels ( p ,  0 )  in 
a very simple form. First, one can check 
explicitly that *agiven in Eq. 5 is indeed an 
eigenfunction of the Harniltonian (Eq. 7 )with 
I = 112 .  This follows from the fact that it is 
a SO(5)  spinor under the generators Lab: 

1 
Lab*a = - (rub)ap*p.  From this, one can 

see that (x) transforms= *,,, ,qmp 
as an irredicI'b"1e spinor under the SO(5) 
group. Therefore, the complete set of nor- 
malized basis functions in the lowest SO(5) 
level 
( p ,  0 )  with orbital coordinate xu = qra 
? and isospin coordinate ni = Guiuis given 
by 

with integers ml + m, + m3 + m4 = p .  
These basis functions in the lowest SO(5)  
level are the exact eigenstates of the Hamil- 
tonian (Eq. 7 )  with d @, 0 )  fold degenerate 

fi2 
eigenvalue of 	z p . They are the natural 

generalizations of the wave functions in the 111 
(Eq. 2) of the QHE problem. The very simple 
form of the single-particle wave function (Eq. 

9) introduced here greatly helps calculations of 
the many-body wave function. 

An incompressible quantum spin liq- 
uid. We are now in the position to consider 
the quantum many-body problem involving 
N fermions. The simplest case to consider 
is N = d ( p ,  0 ) ,  when the lowest SO(5)  
level is completely filled. In this case, the 
filling factor v = Nld(p ,  0 )  = 1, and the 
many-body ground-state wave function is 
unique. 

Before presenting the explicit form of the 
wave function, we first need to discuss the 
thermodynamic limit in this problem, as it is 
rather nontrivial. We shall consider the limit 
p = 21 + cc and R + cc while keeping q 
constant. For energy eigenvalues in Eq. 8 to 

R 
be finite, we need I ,  = lim,,, -v ' i  to 

approach a finite constant, which can be de- 
fined as the "magnetic length in this prob- 

h2 
lem. In this limit, E(q)  = (1 + q ) , and 

the single-particle energy spacing is finite. 
At v = 1 ,  N -p3 - R6, the naively defined 
particle density NIR4 would be infinite. 
However, we need to keep in mind that 
each particle also has an infinite number of 
isospin degrees because I +a.Taking this 
fact into account, we see that the volume of 
the configuration space, defined to be the 
product of the volume in orbital and isospin 
space, is R4 X R2. Therefore, the density 
n = NIR6 is actually finite in this limit. 

Using A = {ml,m2,m3,m4}= 1 ,  . . . ,d(p, 
0 )  to label the single-particle states, the 
many-particle wave function is given by a 
Slater determinant 

@(XI. . . xN) 

= * A I ( X I )  . ' * A , ( X N ) E A ~ .  . .A ,V  ( 1 0 )  
The density correlation function p(x, x ' )  = 

1 

can be computed exactly and is given by 

p ( x , x l )= 1 - 1qA(x)TA(x1)I2= 

1 - pPe(x)*e(x ' )~2~= 

where the explicit form of the single-particle 
wave function (Eq. 9)  was used. In the ap- 
proximation, we placed particle x' on the 
north poles of both the orbital and the isospin 
space, i.e. x: = 6,a and ni = 63i ,  and 
expanded in terms of Xt = R2(x: + X :  + 
x: 	+ x:) and NH = R2(n: + n:) in the limit 

R' 
1 = l m ,  . We see that just like in the 

P 

QHE liquid, a particle is accompanied by a 

perfect correlation hole, gaussianly localized 
in its vicinity. The new feature in our case is 
that the incompressibility applies to both the 
charge and isospin channel. 

Having discussed the generalization to 
the integer QHE, let us now turn to the 
fractional QHE. One can see that the many- 
body wave function Qm = Qm(xl ,. . . ,xN) 
with odd integer m is also a legiti-
mate fermionic wave function in the lowest 
SO(5) level. This is so because the product 
of the basic spinors T a is always a legiti- 
mate state in the lowest SO(5) level. Qm is 
a homogeneous polynomial of ?,(xi) with 
degree p' = mp. Therefore, the degener- 
acy of the lowest SO(5) level in this case is 

6
1 

m3p3, while the particle number is still 

N = d(p ,  0) .  The filling factor in this case is 
v = Nld(mp, 0 )  = m P 3 .Although Qmcannot 
be expressed in the Laughlin form of a 
single product, we can still use plasma 
analogy to understand its basic physics. 
1QmI2can also be interpreted as the Boltz- 
mann weight for a classical fluid, whose 
effective inverse temperature is pm = 

mpm,l,  As the correlation functions for the 
m = 1 case can be computed exactly, it is 
plausible that the m > 1 case has similar 
correlations; in particular, it is also an in- 
compressible liquid. However, the effective 
parameters need to be rescaled properly in 
the fractional case. The effective magnetic 

R R 
length is given by 1; = 7= -. This 

\h & 
incompressible liquid supports fractional- 
ized charge excitation with charge m-3.  
Such a state may be described by a wave 
function of the form Qm-'Qh, where Qh is 
the wave function of the integer case, 
where one hole is removed from a given 
location in the bulk interior to the edge of 
the fluid. To our knowledge, this is the first 
time that a quantum liquid with fractional 
charge excitation has been identified in 
higher dimension d > 2. 

Emergence of relativity at the edge. 
Before we go to the discussion of our model, 
let us first review how 1 + 1 dimensional 
relativity emerges at the edge of the 2D QHE 
problem. We shall restrict ourselves to the 
integer case only. In the 111, there is no kinetic 
energy. The only energy is supplied by the 
confining potential V(r) ,which confines the 
particles in a circular droplet of size R. 
Eigenfunctions in the 111 take the form + , ( z )  

= znexp(-	@I. From this we see that a 
41; 

particle is localized in the radial direction at 
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rn = nl,, and it carries angular momentum L = 

n. Edge excitations are particle hole excitations 
of the droplet. A particle hole pair with the 111 
labels n and m near the edge has energy E = 

- = (n - m)l,P(R), and angular mo- 
mentum L = n - m. Therefore, a relativistic 
linear relation exists between the energy and the 
momentum of the edge excitation. Furthermore, 
as n - m > 0, the edge waves propagate only 
in one direction; i.e., they are chiral. Therefore, 
we see that relativity emerges at the edge be- 
cause of a special relation between the radial 
and the angular part of the wave function f.It 
turns out that such a relation also exists in the 
present context. 

In our spherical model, we can introduce a 
confining potential V(X,) = V(X,), where 
V(X,) is a monotonic function with a mini- 
mum at the north pole x, = 1 and a maxi- 
mum at x, = - 1. For N < d(p,  O), the 
quantum fluid fills the configuration space 
around the north pole x, = 1, up to the 
"Fermi latitude" at xc. Within the lowest 
SO(5) level, there is no kinetic energy; only 
the confining potential V(x,) determines the 
energy scale of the problem. Although the 
SO(5) symmetry of the S4 sphere is broken 
explicitly by the confining potential, the 
SO(4) symmetry is still valid. Without loss 
of generality, we can fill the orbital and 
isospin space so that the ground state is a 
SO(4) singlet. 

The orbital SO(4) symmetry is defined to 
be the rotation in the (x , ,  x,, x,, x,) sub-
space, generated by the angular momentum 
operators Lp; = -i(xCL8, -xVaCL) where p,, 
v = 1, 2, 3, 4. These angular momentum 
operators satisfy SO(4) commutation rela- 
tions, which can be decomposed into the 
following two sets of SU(2) angular momen- 
tum operators: K(,:) = (L, + P,) and K g )  

= 7
1 

(L, -PI) ,  where L, = 2
1 

E,,,L~,O), =P, 

L g )  Because of the coupling to the Yang 
monopole gauge potential, these orbital 
SO(4) generators are modified into K,,  = 

K\:) and KZ1 = K g )  + I,.Therefore, all edge 
states can be classified by their SO(4) quan- 
tum numbers (k,, k,), where K:, = k,(k, + 
1) and Kz, = k,(k, + l ) ,  respectively. 
Applying these operators to the states in the 
lowest SO(5) level (Eq. 9), we find that the 
state Im ,,m,, m,, m41 has quantum numbers 
m, + m, = 2k, ,m,  - m, = 2kZZ,m, + 
m4 = 2k, and m, - m4 = 2klZ. In partic- 
ular, the elementary SO(5) spinors defined in 
Eq. 5 transform according to the (0, 112) and 
(112, 0) representations of SO(4). 

In the subspace of lowest SO(5) levels 
defined by Eq. 9, the orbital coordinate op- 

1 
erators xu can be represented by xu = - T T a  

P a 
-a?' From this we see that the Im,, m,, m,, 

m,) state is also an eigenstate of px,, which 
takes quantized values px, = rn, + m, -

m, - m,. Because m, + m, + m, + m, = 

P,
Pxs 

can range over P + 1 values: -2,
2 

+ I ,  . . . .-P 
Therefore, for a givenp and at 2 2 '  

a fixed latitude on the orbital space x,, the 
SO(4) quantum numbers (k , ,  k,) are given 

by 2k, = 
P 

(1 - x,) and 2k2 = 
P 
- (1 + x,).-

2 2 

The role of the radial coordinate in the 2D 
QHE problem is played by 1 - x,, which 
measures the distance away from the origin 
of the droplet at x, = 1. In the 2D case, the 
orbital angular momentum is simply a U(1) 
phase factor. In our case, the orbital angular 
momentum is a SO(4) Casimir operator, 

P

whose eigenvalue is given by 2k1 = -(1 -

2 
x,). Therefore, just as in the 2D case, the 
distance away from the center of the droplet 
directly determines the magnitude of the or- 
bital angular momentum. Because the confin- 
ing potential can be linearized near the edge 
of the droplet 1 - x:, this relation translates 
into a massless relativistic dispersion rela- 
tion. Furthermore, as we shall see, the cou- 
pling to the isospin degrees of freedom gives 
rise to particles with nontrivial helicity. 

An edge excitation is created by removing 
a particle (leaving behind a hole) inside the 
Fermi latitude x:, with quantum numbers 

[xt :  kf = 
P
-(I - xt),  kTz; k; = 

P
-(I + x;),

4 4 
k;J and creating a particle outside the Fermi 
latitude, with quantum numbers [x';; k'; = 

P P
4 (1 - $1, kyz; k$ = ;(1 + .Y:), k$J. This 

excitation can also be specified by the quan- 
tum numbers (Ax, = xt  - x:, TI, T,_, T,. 
T,,), where the total angular momenta TI, = 

Kt,  + Ky,, T,, = K:, + K$,, T,: = Tl(Tl + 
1) and T i  = T2(T2 + 1) are the sums of the 
SU(2) X SU(2) quantum numbers of the 
particle and the hole From the usual rules of 
the SU(2) angular momentum addition, we 
can determine the allowed values of the total 
angular momenta TI = I kf -kt 1, . k'; + 
kt and T, = k$ - kil, , k$ + k: Given 

2 
x: and x';, we obtain LC,= x'; - XP5 = - n l  

and the energy is given by 

a v 8V 2R 
E = - A X , = - - n  (12)ax, ax, p 

In the 2D QHE case, there is an unique way 
to combine the angular momenta of a particle 
and a hole; therefore, the dispersion relation has 
only one branch. In higher dimensions, a parti- 
cle and a hole can be bound or independent, 

giving rise to collective and continuum branch- 
es of the spectrum. Mathematically, this effect 
manifests itself in terms of the different ways of 
combining the SO(4) angular momenta of a 
particle and a hole. Let us investigate the pos- 
sibility of collective excitations in the spectmn. 
In a noninteracting Fermi system with the usual 
form of kinetic energy E = p2/2M, a particle 
and a hole have a well-defmed relative momen- 
tum but do not have a well-defined relative 
position, except in one spatial dimension. 
Therefore, such a pair can only be "bound" 
through an attractive interaction. However. 
there are very special cases where the pair can 
be bound for kmematic reasons, without any 
interactions. In one dimension, the kinetic en- 
ergy is approximately independent of the rela- 
tive momentum; therefore, one can superpose 
states with different relative momenta to obtain 
a state with well-defined relative position. The 
resulting state is a bosonic collective mode. In 
our case, we fmd that the special nature of the 
wave function in the lowest SO(5) level leads to 
a similar form of the kinematic binding. Basl- 
cally, there is no kmetic energy in the lowest 
SO(5) level, and a particle and a hole can be 
locked into a well-defined relative position 
without any kinetic energy cost. In our case. 
these collective excitations lie at the edge of the 
continuum states and are characterized by the 
total SO(4) quantum numbers ( 7; = Iky - k;l 

k$ - k t  = i),where A is a positive lnteger 

and the A = 0 case is counted only once. These 
states are formed by a macroscopic number of 
contractions of the spinor wave functions (Eq. 
9) of a particle and a hole, and it can be shown 
explicitly that the wave function in the relative 
orbital and isospin coordinates are gaussianly 
localized. In this sense. a particle and a hole 
form a bound state and represent collective 
excitations of the system. 

In the flat space limit, the SO(4) symme- 
try group of S' reduces to the Euclidean 
group E' of the 3D flat space. The Euclidean 
group has two Casimir operators, and the 
magnitude of the momentum operator p is 
determined by either T, or T,, which in our 
case gives lpl = n:R. As the energy is given 
by Eq. 12, the collective excitations have a 
relativistic linear dispersion relation E = 

d 1 
c p ,  with the speed of light glven by c = o l ,  

2R2 a v 
= 212 ax,. If we take for I,, the Planck 

P 


length I, = 1.6 X m, we can estimate 

d l '  
=the potential energy gradient to be 

7 7 X lo6, eV m p '  
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The second Casimir operator of the Eu- 
clidean group is the helicity, A = J-pllpl, 
where J is the total angular momentum of a 
particle. This quantity can be obtained from 
the SO(4) quantum numbers by A = T,  - T2 

n 
(16). Therefore, the (T ,  = Z,T2 = T,) state 

describes a relativistic spinless particle 
obeying the massless Klein-Gordon equa- 

tion. The ( T ,  = -, 
n 

T, = T,  + 1) and the 
2 

massless photon states with left-handed and 
right-handed circular polarization. The as- 
sociated fields satisfy Maxwell's equation. 

states describe massless gravi- 

ton states with left-handed and right-hand- 
ed circular polarization. The associated 
fields satisfy the linearized Einstein equa- 
tion. In fact, we can proceed this way to 
find all massless relativistic particles with 
higher spins. Here the time dimension is 
introduced to the problem through the en- 
ergy of the confining potential (Eq. 12), 
whereas the space dimension is introduced 
through the Euclidean momentum. The rel- 
ativistic dispersion together with the helic- 
ity quantum numbers show that the collec- 
tive excitations form nontrivial representa- 
tions of the Lorentz group. The spins of 
these massless particles are derived from 
the isospin degrees of freedom in the orig- 
inal Hamiltonian, and the relativistic field 
equations have their roots in the original 
isospin-orbital couplings. 

So far we have obtained only a noninter- 
acting theory of relativistic particles; in par- 
ticular, the equation for the graviton is only 
obtained to the linear order. Once we turn to 
interactions among the different modes, the 
graviton would naturally couple to the energy 
momentum tensor of other particles. It is 
known that consistency requires the graviton 
to couple itself exactly, according to the full 
nonlinear Einstein equation (17, 18). There- 
fore, it is likely that the interaction among the 
edge modes in our model also contains the 
nonlinear effects of quantum gravity. On the 
other hand, the main problem with the current 
model seems to be an "embarrassment of 
riches." In order to define a problem with 
large degeneracy in the single-particle spec- 
trum, one needs to take the limit of high 
representation of the isospin. Therefore, each 
particle has a large number of internal de- 
grees of freedom. As a result, there are not 
only photons and gravitons in the collective 

modes spectrum, there are also other mass- 
less relativistic particles with higher spins. 
However, the presence of massless higher 
spin states may not lead to phenomenological 
contradictions. It is known from field theory 
that massless relativistic particles with spin 
s > 2 cannot have covariant couplings to 
photons and gravitons (19). Therefore, it is 
possible that they decouple in the long wave- 
length limit. 

Hall current and noncommutative ge- 
ometry. So far, we have discussed only the 
quantum eigenvalue problem. It is also in- 
structive to discuss the classical Newtonian 
equation of motion derived from the Hamil- 
tonian H + V(Xu), where H is given by Eq. 
7. The classical degrees of freedom are the 
isospin vector I,, the position Xa, and the 
angular momentum Lab; and their equations 
of motion can be derived from their Poisson 
bracket with the Hamiltonian. As we are in- 
terested in the equations of motion in the 
lowest SO(5) level, we can take the infinite 
mass limit M + x. In this limit, we obtain 
the following equations of motion 

where the dot denotes the time derivative. 
Just as in the 111 problem, the momentum 
variables can be fully eliminated. However, 
the price one needs to pay for this elimination 
is that coordinates [X,, Xb] become noncom- 
muting. In fact, the projected Hamiltonian in 
the lowest SO(5) level is simply V(Xa). If we 
assume the commutation relation [Xa, Xb] = 

R" 

, pc b ,  then the orbital part of Eq. 13 can be 

derived from the Poisson bracket of Xu with 
V(Xu). If we expand around the north pole 

X, = R,  we finally obtain the following 
commutation relation 

This is the central equation underlying the 
algebraic structure of this work. It shows that 
there is a fundamental limit, lo, for the mea- 
surability of the position of a particle. 

The first equation in Eq. 13 determines 
the Hall current for a given spin direction J; 
in terms of the gradient of the potential 
q;$ VIdX,,, giving a direct generalization of 
the 2D Hall effect. From the second equation 
in Eq. 13, we see that the spin of a particle 
precesses around its orbital angular momen- 
tum (which becomes linear momentum in the 
flat space limit) with a definite sense. 

Conclusion. At the conclusion of this 
work, we now know three different spatial 
dimensions where quantum disordered liq- 
uids exist: the 1D Luttinger liquid, the 2D 
quantum Hall liquid, and the 4D generaliza- 
tion found in this work. We can ask what 

makes these dimensions special. There is a 
special mathematical property that singles out 
these spatial dimensions. One, two, and four 
dimensional spaces have the unique methe- 
matical property that boundaries of these 
spaces are isomorphic to mathematical 
groups, namely the groups Z2, U(1) and 
SU(2). No other spaces have this property. It 
is the deep connection between the algebra 
and the geometry that makes the construction 
of nontrivial quantum ground states possible. 
Other related mathematical connections are 
reviewed and summarized in (11). The 4D 
generalization of the QHE offers an ideal 
theoretical laboratory to study the interplay 
between quantum correlations and dimen- 
sionality in strongly correlated systems. It 
would be interesting to study our quantum 
wave functions on 4D manifolds with non- 
trivial topology and investigate whether dif- 
ferent topologies of four manifolds corre-
spond to degeneracies of our many-body 
gound states. The quantum plateau transition 
in the 2D QHE is still an unsolved problem; 
one could naturally ask if the plateau transi- 
tion in four dimensions can be understood 
better because of the higher dimensionality. 
In 2D QHE, quasi-particles have both 
anyonic and exclusion statistics. The former 
cannot exist in four dimensions; the question 
is whether quasi-particles in our theory would 
obey exclusion statistics in the sense of Hal- 
dane. To address these questions, it is impor- 
tant to construct a field theory description of 
the 4D quantum Hall liquid, in analogy with 
the Chem-Simons-Landau-Ginzburg theory 
of the QHE. 

In this work, we investigated the possi- 
bility of modeling relativistic elementary 
particles as collective boundary excitations 
of the 4D quantum Hall liquid. Similar 
connections between condensed-matter and 
particle physics have been explored before 
(20-24). There are important aspects 
unique to the current problem (25). The 
single-particle states are hugely degenerate, 
which enables the limit of zero inertia mass 
M + 0 and completely removes the non- 
relativistic dispersion effects. This limit is 
hard to take in usual condensed-matter sys- 
tems. The single-particle states also have a 
strong gauge coupling between iso-spin and 
orbital degrees of freedom, which is ulti- 
mately responsible for the emergence of the 
relativistic helicity of the collective modes. 
This type of coupling is not present in usual 
condensed-matter systems. The vanishing 
of the kinetic energy is the lowest SO(5) 
levels enables binding of a particle and a 
hole into a pointlike collective mode. The 
most remarkable mathematical structure is 
the noncummutative geometry (Eq. 14), 
which expresses a SU(2) co-cycle structure 
of the magnetic translation. Although 
progress reported in this work is still very 
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limited, we hope that this framework can 
stimulate investigations on the deep con-
nection between condensed-matter and el- 
ementary particle physics. 
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Groundwork for a Rational 
Synthesis of C,,: 

Cyclodehydrogenation of a 
C,,H,, Polyarene 

Margaret M. Boorum,' Yury V. Vasil'ev,' Thomas Drewello,** 

Lawrence T. Scott1* 


A C,,H3, polycyclic aromatic hydrocarbon (PAH) that incorporates all 60 
carbon atoms and 75 of the 90 carbon-carbon bonds required t o  form the 
fullerene C,, has been synthesized in  nine steps by conventional laboratory 
methods. Laser irradiation of this C6,H3, P A H  at  337 nanometers induces 
hydrogen loss and the formation of C,,, as detected by mass spectrometry. A 
specifically labeled [13C3]C60H30 retains all three 13C atoms during the cage 
formation process. A structurally related C4,H,, P A H  that lacks the three 
peripheral benzene rings cannot be transformed into C,,, whereas the next 
higher homolog, a C,,H, PAH, degrades t o  the C,,H3, PAH,  which then loses 
hydrogen t o  give [6O]fullerene. These control experiments verify that the C,, 
is formed by a molecular transformation directly from the C,,H3, P A H  and not  
by fragmentation and recombination in  the gas phase. 

Despite more than a decade of intensive re- 
search on fullerenes (I), chemists worldwide 
still have no general methods or strategies 
available for the rational synthesis of these 
polyhedral carbon allotropes as discrete, prese- 
lected targets. Under carefully controlled con- 
ditions, the vaporization of graphlte generates 
substantial amounts of C,, and C,,; however, 
this complicated process remains poorly under- 
stood and is intolerant to alteration (2). Higher 
fullerenes can be obtained from this source only 
in minuscule amounts through tedious chro- 
matographic separations (3) and likely will nev- 
er be available in quantity except by rational 
synthesis. 

'Department of Chemistry, Merkert Chemistry Cen- 
ter, Boston College, Chestnut Hill, MA 02467, USA. 
2Department of Chemistry, University of Warwick, 
Coventry CV4 7AL, UK. 

*To whom correspondence should be addressed. E-
mail: t.drewello@warwick.ac.uk, lawrence.scott@bc. 
edu 

Before we can hope to develop rational 
syntheses of individual higher fullerenes, the 
goal of synthesizing C,, by rational methods 
must fust be met. In this connection, the re- 
search groups of Diederich and colleagues (4), 
Rubin et al. (S),and Tobe et al. (6-8)  have all 
prepared macrocyclic polyalkynes that shed 
multiple appendages when subjected to laser 
desorption/ionization (LDI), and the high-ener- 
gy intermediates thus generated collapse to C,, 
in a mass spectrometer. The considerable am- 
biguity about which atoms in these molecular 
precursors become bonded to which other at- 
oms as the fullerene takes shape, however, pre- 
cludes characterization of these processes as 
entirely "rational" syntheses. Prinzbach et al. 
(9) recently reported a genuinely rational syn-
thesis of icosahedral [Slfullerene-c,,, in which 
substituents were removed from a preformed 
dodecahedrane cage, but extensions of this ap- 
proach to syntheses of fullerenes comprising 60 
or more carbon atoms are likely to be difficult. 
In LDI expenments, the reactive C,,, entities 
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prepared in this way can be made to oligomer- 
ize and fuse into C,,, (10). 

Here, we report the synthesis of a stable 
polycyclic aromatic hydrocarbon (PAH) that 
Incorporates all 60 of the carbon atoms and 75 
of the 90 carbon-carbon bonds required to form 
C,,, and its laser-induced cyclodehydrogena- 
tion to C,, (Fig. 1). Control experiments estab- 
lish that the C,, formed in the final step comes 
from a direct molecular transformation ior "zip- 
ping up") of the synthetic PAH 6 ,  as suggested 
in Fig. 1, and not by a laser-induced degrada- 
tion of the hydrocarbon to smaller fragments 
that recombine in a thermodynamically driven 
manner, as in the laser-induced vaporization of 
graphite (2). 

Several research groups have indepen-
dently conceived of a laboratory synthesis of 
C,,, from 6 or structurally related 60-carbon 
~ % ~ o u n d s .Wang and Shevlin in Alabama 
were the first to report preliminary experi- 
mental work in this direction (1  1).Their ap- 
proach can be traced back to an earlier pro- 
posal from the same laboratory (12); howev- 
er, they encountered difficulty in assembling 
the 60-carbon fullerene precursor. Our syn- 
thesis of 6 was designed to ensure a regio- 
regular head-to-tail cyclotrimerization of a 
sickle-shaped 20-carbon precursor. 5. While 
our work was under way, Sarobe et al. in the 
Netherlands found that attempts to synthesize 
6 from a different precursor without control- 
ling the head-to-tail regiochemistry gave the 
C,-symmetric PAH 6 only as a minor coni- 
ponent in an inseparable mixture of C,,,H,,, 
regloisomers (13) Gomez-Lor et a1 in Spain 
later prepared 6 as a single regioisomer by 
threefold annulation of truxene, a venerable 
27-carbon, C,,-symmetric PAH (13, 15 ) .  
Neither Sarobe et al. nor Gomez-Lor et a/.. 
however, were able to convert their synthetic 
C,,H,, material to C,,. 

Our synthesis of 6 (16) began with com-
mercially available (1-bromoethy1)benzene. 1, 
and 2-naphthaldehyde (1 7). These were joined 
by a Wittig reaction to give alkene 2 as a 
mixture of (E)-and (Z)-isomers in a combined 
yield of 79% after purification. Oxidative pho- 
tocyclization of 2 under standard conditions 
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