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birds. However, a later arrival in Europe of 
migratory birds wintering south of the Sahel 
has been reported (7,26). For these species, 
the decision when to start spring migration 
may become maladaptive when the cue for 
migration is independent of the environmental 
change in the breeding area (7). Climate 
change may thus be a serious threat to species 
that migrate from tropical wintering grounds 
to temperate breeding areas. They may arrive 
at an inappropriate time to exploit the habitat 
and compete with larger numbers of individu- 
als of resident species as more of them sur- 
vive the winter. These arguments may partly 
explain the decline of these long-distance mi- 
gratory species in Western Europe (a), al-
though short-distance migrants may be more 
flexible. These fidings support previous re- 
sults demonstrating that shifts in global cli- 
mate patterns can affect migratory birds (27). 

These changes in plant phenology and bird 
migration show that climate warming may 
lead to a decoupling of species interactions, 
for example, between plants and their pollina- 
tors or between birds and their plant and insect 
food supplies (2). Changes not only in mean 
temperatures but also in temperature patterns 
may affect these interactions even more 
strongly because they may alter the synchro- 
nization between species (28). An example of 
such decoupling was recently reported. The 
Great Tit still breeds at the same time, but its 
food supply has been advanced because of 
earlier plant development in recent years (29). 
Different phenological responses (7, 30) may 
alter the competitive ability of different species 
and thus their ecology and conservation, re- 
sulting in unpredictable impacts on cornrnuni- 
ty structure and ecosystem functioning. 

The observed phenological changes 
have occurred with a warming only 50% or 
less of that expected for the 21st century 
(I). Many ecological (carbon sequestration, 
nutrient and water cycles, species competi- 
tion, pests and diseases, bird migration and 
reproduction, and species-species interac- 
tions), agricultural (crop suitability, yield 
potential, length of growing season, risk of 
frost damage, epidemiology of pests and 
diseases, timing and amount of pesticide 
use, and food quality), and socioeconomic 
and sanitary (duration of the pollen season 
and distribution and population size of dis- 
ease vectors) factors depend strongly on 
plant and animal phenology. Phenology is 
therefore increasingly relevant in the 
framework of global change studies (31). 

As in many areas of environmental sci- 
ence, the key requirement is long-term data 
sets. Today, thousands of people-profes- 
sionals and volunteers-record phenologi-
cal changes all over the world, as do inter- 
national and national phenological moni- 
toring networks such as Global Learning to 
Benefit the Environment (GLOBE) or the 

Euro~ean  Phenoloev Network. Together u- " 
with sensing' atmospheric' and ecO-
logical studies, these data will help to answer 
the many questions raised by the recently re- 
ported climate effects on phenology: what 
are the limits of the lengthening of the plant 
growth season and the consequent 
of our planet? Will the (less seasonal) tropical 
ecosystems be less affected than boreal, tem- 
perate, and Mediterranean ecosystems? How 
will different aquatic ecosystems respond? 
How will responses to temperature and other 
drivers of global change interact to affect 
phenology and the distribution of organisms? 
How will changes in synchronization be- 
tween species affect population dynamics 
both in terrestrial and aquatic communities? 
Will appropriate phenological cues evolve at 
different tro~hic levels? 
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P E R S P E C T I V E S :  P L A N T  B I O L O G Y  

A Baroque Residue in Red Wine 
Herman H6fte 

The walls of higher plants contain small 
amounts of a mysterious polysaccha- 
ride known as rhamnogalacturonan I1 

(RGII). RGII is thought to be the most com- 
plex polysaccharide on Earth, and its pres- 
ence and strong conservation in all higher 
plants suggest that it is important for the 
structure or growth of plant cell walls. The 
study by O'Neill et al. (I) on page 846 of 
this issue convincingly shows, 23 years after 
its discovery (2), that RGII is essential for 
plant growth and that minor changes in its 
structure cause growth defects. 

More than 300 years ago, Robert Hooke 
pointed his primitive microscope at a slice 
of cork and discovered the cellular basis of 
organisms. Sadly, since then, plant cell 
walls, which formed the comp&ents he 
actually observed, have never been consid- 
ered particularly entertaining structures. In- 
deed, the word wall itself evokes something 
dull and rigid, built only to enclose, sup- 
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port, divide, and protect. However, a closer 
look reveals just how erroneous this view 
is. Walls of growing plant cells are extreme- 
ly sophisticated composite materials made 
of dynamic networks of polysaccharides, 
protein, and phenolic compounds. Cellu- 
lose microfibrils with a tensile strength 
comparable to that of steel provide the plant 
with a load-bearing framework. These mi- 
crofibrils are rigid wires made of crys- 
talline arrays of P-1,Clinked chains of glu- 
cose residues, which are extruded from lit- 
tle hexameric spinnerets in the plant cell 
plasma membrane and surround the grow- 
ing cell like the hoops around a barrel. Be- 
cause cellulose microfibrils constrain tur- 
gor-driven cell expansion in one preferen- 
tial direction, they control the shape of 
plant cells and ultimately that of the plants 
themselves. Hemicelluloses, such as xy- 
loglucans, are tethered by hydrogen bonds 
to cellulose and form cross-links that may 
control the se~aration of the cellulose mi- 
crofibril hoois. The cellulose-hemicellu- 
lose network is embedded in a matrix of 
complex galacturonic acid-rich pectic 
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