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Animals and many plants are counted in discrete units. The collection of possible 
values (state space) of population numbers is thus a nonnegative integer lattice. 
Despite this fact, many mathematical population rnodels assume a continuum of 
system states. The complex dynamics, such as chaos, often displayed by such 
continuous-state rnodels have stimulated much ecological research; yet discrete- 
state rnodels with bounded population size can display only cyclic behavior. Mo- 
tivated by data from a population experiment, we compared the predictions of 
discrete-state and continuous-state population rnodels. Neither the discrete- nor 
continuous-state rnodels completely account for the data. Rather, the observed 
dynamics are explained by a stochastic blending of the chaotic dynamics predicted 
by the continuous-state model and the cyclic dynamics predicted by the discrete- 
sate rnodels. We suggest that such lattice effects could be an important com- 
ponent of natural population fluctuations. 

The discovery that simple deterministic pop- Of course, real ecological systems are in- 
ulation models can display complex aperiodic variably stochastic. The relative degree of 
fluctuations such as chaos (I) inspired de- stochastic variability due to random demo- 
cades of empirical and theoretical work in graphic events experienced by individuals 
ecology (2, 3). Such mathematical models of 
population dynamics make use of a continu- 
ous state space, i.e., variables representing 
population densities are real-valued. But an- 
imals, and for many practical purposes, 
plants, come in whole numbers. More realis- 
tic models would cast population densities as 
discrete variables, with state space a discrete 
lattice of numbers. As long as population size 
is bounded, deterministic models of the latter 
type have finitely many possible states and 
hence display only periodic cycles. Approx- 
imating population size with continuous-state 
models is commonly justified by the assump- 
tion that population numbers remain suffi- 
ciently large so that the discrete state space 
lattice is sufficiently fine (4). However, the 
deterministic dynamics of associated dis- 
crete-state and continuous-state models can 
be quite different even for very large popu- 
lation sizes, so that the "lattice effects" 
caused by the discreteness of animal densities 
cannot always be ignored (5). 
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Fig. 1. Density dynam- 
ics of Ricker models 
withb = 17andc= 1. 
Phase plots are shown 
on the left, and the 
corresponding time 
series on the right. (A) 
The chaotic attrador 
of Ricker model Eq. 1. 
(B) A 2-cycle attractor 
of the lattice Ricker 
model Eq. 2 with V = 
2 (196 displayed lat- 
tice points). (C) Equi- 
librium attractor of 
lattice model Eq. 2 
with V = 5 (1225 dis- 
played lattice points). 
(D) A 13-cycle attrac- 
tor of lattice model 
Eq. 2 with V = 10 
(4900 displayed lat- 
tice points), which be- 
gins to resemble the 
chaotic attractor in 
(A). (E) A 117-cycle 
attractor of lattice 
model Eq. 2 with V = 
300 (4.41 X lo6 dis- 
played lattice points), 
which highly resem- 
bles the chaotic at- 
tractor in (A). Notice 
that the lattice is so 
fine with V = 300 that 
the grid lines appear 
to fill the entire space. 

population numbers. The increased variabili- 
ty is just the law of large numbers in reverse: 
If, out of a population of 10,000, individuals 
each die at random with probability (1 - p), 
the number of survivors is (relatively) near 
the expected value of 10,00Op, whereas if the 
initial population were only 10 individuals, 
the relative departure of survivors from lop is 
likely to be more extreme. The increased 
variability of populations under demographic 
noise at small population sizes is a well- 
studied theme of discrete-state population 
models (4, 6) .  Here we show how the deter- 
ministic component of dynamics on the dis- 
crete lattice of population values can influ- 
ence stochastic population dynamics at both 
high and low population sizes, over and 
above the influence of demographic stochas- 
tic forces. Intriguingly, the pattern of the 
stochastic dynamics emerges as a blend of the 
patterns predicted by the continuous- and dis- 
crete-state models. Moreover, we report on a 
laboratory population experiment that dem- 
onstrates that such lattice effects are in fact 
both real and important. 

We illustrate population lattice effects with 
the Ricker map (7, 8), a simple model familiar 
in ecology and chaos theory (1,9). The model 

(F) A stochastic 'real- 0 x , l V  6 t 
ization of the stochastic lattice model Eq. 3 with V = 5 and a = 0.03. Noise on the lattice reveals 
the chaotic signal, but episodes (colored in blue) of the lattice equilibrium in (C) recur. 
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takes the form y,+, = by, exp(-cy,), where y, 
represents the density of individuals per unit 
habitat size at time t, b > 0 is the per capita 
birth rate, and exp(-cy,) (with c > 0) is the 
fraction of offspring expected to survive one 
unit of time at population density y,. The expo- 
nential term that occurs here and in the seauel 
can be interpreted as arising from an assump- 
tion of random contacts among individuals. Ex- 
amples of such processes include contacts 
among hosts and parasitoids (10-12), and the 
cannibalistic interactions in Tribolium (13, 14) 
and Plodia (15). It is well known that the 
Ricker and similar models can exhibit complex 
dynamics, including chaos. 

We introduce habitat size V explicitly into 
the model equation by the change of variables 
x, = y,V, where x, is the number of individuals 
in a habitat of size V. For the Ricker map this 
leads to the equation 

inversely proportional to the habitat size. In this 
type of model, density dynamics are invariant 
with respect to V (i.e., the sequence {x,);"=, is a 
solution of Eq. 1 when V = 1 if and only if the 
sequence {h,};"=,, is a solution when V = k). 
For example, a population displaying a 2-cycle 
oscillation in a 2-acre habitat is forecast also to 
display 2-cycles in a 200-acre habitat, with a 
100-fold increase in animal numbers. Empirical 
studies show that some species scale with hab- 
itat size in this fashion (16); however, this 
scaling law breaks down in unrealistically small 
(or large) habitat sizes. Here we focus on the 
class of models whose continuous-state dynam- 
ics scale with habitat size V, and vary the 
parameter V to compare populations of various 
sizes in corresponding discrete-state models. 

Suppose we confine the model in Eq. 1 to 
the lattice of feasible states by means of the 
integerization 

c where int[x] denotes the nearest integer to x 
The density-dependence coefficient - is now (0.5's are rounded up). For parameter values v 
Fig. 2. Density dynam- 
ics of a modified Ni- 
cholson-Bailey parasi- 
toid-host model (77) in A ,- 
which the area of dis- 
covery is inversely pro- 
portional to the habitat 
iize V. The lattice mod- WJ 
el equations are Ht+, 
= int(Ht exp[r(l - HJ 

L 

(KV)) - aPJV1) and B ;- 
Pt+, = int(sH,[l - 
exp(-aPfl]). We used 
parameter values r = 3, 
K = 100, a = 0.01, s = 
4.4 and initial conditions 
H = 100y Po = 100K (4 The chaotic attractor c 
of the nonlattice model 
(B) A high-amplitude 
Ccycle attractor of the 
lattice model with V = 
0.05 (200 displayed lat- 
tice points). (C) A Low- 
amplitude 4-cycle: at- & 

tractor of the lattice D 2 
model with V = 025 
(5000 displayed lattice 
mints). ID1 A 181-cvcle 
kracfo; i f  the hitice 
model with V = 100 
(8 X 108 displayed grid L 

points), which resembles E 2- 
the chaotic attractor in 
(A). (E) A stochastic real- 
ization of the parasitoid- o 

I . .  

host model with noise 0 H,I v 200 
added on the square- 

I 

root scale before integerization [appropriate for demographic noise 3)l. The equations are Ht+, 
= int([vHt exp[r(I - HJ(KV)) - aPJq + U , Z ~ ~ ] ~ )  and Pt+, = int([JsHt [ I  - up(-  aPtlV)] + u, 
z,~]~). Here zlt and z,, are standard normal random variables and u; measures the intensity of the 
nolse. In these simulations we used ul = u, = 0.01. The stochastic orbit exhibits a mixture of 
patterns, occasionally resembling the low-amplitude 4-cycle attractor of the lattice model in (C) 
(colored in blue), and occasionally resembling the time series of the chaotic attractor of the 
nonlattice model in (A) (colored in red). 

at which Eq. 1 is chaotic (Fig. lA), the 
dynamics of the "lattice model" in Eq. 2 
range through a complicated sequence of 
transitions, including a 2-cycle when V = 2 
(Fig. lB), an equilibrium when V = 5 (Fig. 
lC), a 13-cycle when V = 10 (Fig. ID), and 
a 117-cycle resembling the chaotic attractor 
when V = 300 (Fig. 1E). In terms of density, 
as V increases (i.e., as the density lattice 
spacing decreases), the attractors of the lattice 
model eventually resemble the chaotic attrac- 
tor of Eq. 1. However, this increase in com- 
plexity is not monotone. Each of the attrac- 
tors in Fig. 1, B to E, is an approximation of 
the chaotic attractor in Fig. lA, although the 
underlying complexity of the continuum limit 
cannot be observed deterministically unless 
the habitat is of sufficiently large size (i.e., 
the density lattice is sufficiently fine). 

Even on a coarse density lattice, the un- 
derlying deterministic complexity can be re- 
vealed by noise as the system is stirred into 
continual transient behavior. For example, a 
stochastic version of Eq. 2 is 

where z, is a standard normal random variable 
and u measures the intensity of the noise. 
When V = 5, the deterministic lattice model 
in Eq. 2 predicts an equilibrium (Fig. 1C); 
however, typical orbits of the stochastic lat- 
tice model in Eq. 3 reveal features similar to 
those of the chaotic attractor (Fig. IF). Note 
that the stochastic time series in Fig. 1F 
episodically revisits the equilibrium of the 
deterministic lattice model (Fig. 1C). 

The integerized Ricker model (Eq. 2) il- 
lustrates what we call a "lattice effect," i.e., a 
significant effect of discrete state space gran- 
ularity on the dynamics of a population. As 
seen in Fig. 1, lattice effects can occur in both 
deterministic systems (Figs. 1, B to E) and 
stochastic systems (Fig. IF). In deterministic 
systems, the complexity of underlying chaot- 
ic dynamics obscured by lattice effects is 
revealed by sufficiently refining the lattice 
(e.g., by increasing the habitat volume). 
However, even for coarse lattices, features of 
the complexity might be revealed by the pres- 
ence of noise on the lattice. In this latter case, 
the system typically retains episodic reap- 
pearances of the lattice dynamic. 

Lattice effects in models are quite general. 
Figure 2 shows lattice effects in a parasitoid- 
host model (17). In Fig. 2E the stochastic 
lattice model time series episodically resem- 
bles both the deterministic chaotic attractor 
(Fig. 2A) and the deterministic lattice model 
4-cycle (Fig. 2C). 

Lattice effects are not theoretical oddities 
arising from simple population models. We re- 
port here observations of lattice effects in an 
experimental study. This example comes from 
a study involving the flour beetle Tribolium (3, 
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Fiz. 3. Density dy- 
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namics of the LFA 
models with b = 
10.67, p,, = 0.1955, A L 

pa = 0.96, ce, = 
0.01647, c,, = 
0.01313, cpa = 0.35. 0 
For the stochastic . -. 

18) whose chaotic cultures we have maintained 
for over 6 years. The experimental design was 
based on the predictions of the deterministic 
"LPA model" (19). The LPA model has suc- 
cesshlly explained and predicted nonlinear 
phenomena in a variety of contexts, including 
transitions between dynamic regimes, multiple 

model (32) the vari- 
ance and covariance 
entries of the matrix Z 
were taken to be 
ull = 2.332, u,, = 
0.2374, and u,, = 
u,, = 0 (3). (A) The . .  . . 
chaotic attractor of 
LPA model 1791. (B1 A 
6-cycle at&a&o; . of 
the lattice LPA model C . 
(37) with V = 1 (on e- 

the order of lo7 lat- 
tice points). (C) A 
124-cycle attractor of 
lattice model (37) ------->. 
with V = 10 (on the 
order of 101° lattice L 

points), which resem- . 
bles the chaotic at- e- 

tractor in (A). (D) A 
stochastic realization 
of (32) with V = 1 
exhibits a mixture of 
patterns, with inter- 
mittent patterns (col- 
ored in blue) that re- 
semble the lattice 
6-cycle in (B) inter- 
spersed among epi- 
sodes (colored in red) 
that resemble the chaotic 
their resemblance to the 

attractor in (A). (E) The 6-patterns in (D) are shown in phase space, where 
6-cycle in (B) is apparent. 

Fig. 4. A 304-week data time 
series obtained from one 300 
replicate of the Tribolium ex- 
periment (3). Parameter val- 
ues (3) for the experiment 1 
are b = 10.67, p, = 0.1955, f 
pa= 0.96, ce, = 0.01647, cea 
= 0.01313, and cpa = 0.35. 
(A) Selected temporal epi- 
sodes that resemble the lat- 56 92 W h  238 286 

tice model 6-cycle shown in 
Fig. 38 are colored in blue. 
The remaining data points, 
colored in red, resemble the 
chaotic time series. (B) The 
selected temporal episodes 
in (A) are shown in phase 
space (on the order of lo7 
lattice points). Compare the 
blue 6-pattern episodes to 
the 6-cycle lattice attractor 
in Fig. 38. 

attmctors, resonance, phase switching, and sad- 
dle influences (3, 18,20-30). As in the Ricker 
model, the density dynamics of the LPA model 
are invariant with respect to habitat size V, and 
the continuous state variables L,P, and A, are 
not confined to the lattice of feasible states. 

The LPA model predicts sequences of dy- 
namic bifurcations as parameters are varied, 
including bifurcation routes to chaos. One such 
sequence was used to design the laboratory 
experiment mentioned above. In this experi- 
ment the forecast route to chaos was experi- 
mentally induced by manipulating the adult 
death rate and adult recruitment rate (3,18,24). 
Experimental treatments were placed in seven 
different predicted dynamic regimes across the 
bifurcation sequence. In each treatment, includ- 
ing those forecast to be chaotic, the data display 
the predicted dynamics (3, 24). However, a 
close study of the data also reveals seemingly 
anomalous patterns not predicted by the LPA 
model-patterns that are, however, predicted 
by lattice versions of the LPA model. We 
present one example in detail. Figure 3A shows 
a chaotic attractor of the LPA model from the 
predicted bifurcation sequence. The data from 
the experimental treatment corresponding to 
this attmctor exhibit the temporal and phase 
space patterns of the predicted chaotic dynam- 
ics (3,24). However, the data also reveal a near 
6-cycle pattern not predicted by the LPA mod- 
el. We show that this unexpected 6-pattern is in 
fact a lattice effect. 

We integerized the LPA model to simu- 
late lattice dynamics (31). When V = 1, the 
lattice model predicts a 6-cycle attractor (Fig. 
3B). When V = 10, the lattice model predicts 
a 124-cycle (Fig. 3C) resembling the chaotic 
attractor (Fig. 3A). As V increases, the lattice 
attractors range through a complicated se- 
quence of transitions, but eventually con- 
verge on the chaotic attractor of the LPA 
model. 

The lattice 6-cycle in Fig. 3B (predicted 
when V = 1, the habitat size used in the 
experimental study) closely resembles the 
6-pattern appearing episodically in the data 
(see Fig. 4). Although the integerization of 
the LPA model given in (31) is somewhat 
arbitrary, other integerizations yielded the 
same result. 

A stochastic version (32) of the integer- 
ized LPA model is obtained by adding demo- 
graphic noise on the square-root scale to the 
two unmanipulated life-stage equations, 
namely the larval and pupal equations (3). 
When V = 1, the time series generated by the 
stochastic lattice model resembles the chaotic 
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attractor; however, the lattice effect 6-pattern 
episodically recurs (see Fig. 3, D and E). 

The 6-pattern forecast by the stochastic 
lattice model is evident in the three experi­
mental replicates (3, 18). Figure 4A shows 
the larval time series data from one replicate. 
The intermittently occurring 6-pattern is also 
seen in the phase space representation of the 
data (Fig. 4B). 

Lattice effects can dramatically alter the 
predictions of ecological models, especially 
in systems for which the continuous-state 
deterministic dynamics are complex. In de­
terministic models, discretizing state space 
can replace a complicated continuous-state 
attractor with a simpler lattice attractor; yet 
the continuous-state dynamics remain impor­
tant, inasmuch as they continue to shape the 
transient behavior on the lattice. In the pres­
ence of noise, the system is influenced by 
both transients and attractors, and thus dis­
plays episodes that alternately resemble the 
dynamics of the continuous-state and lattice 
models. We emphasize that such lattice ef­
fects are not only found in relatively coarse 
lattices or in small populations; indeed, in our 
experimental study of chaotic population dy­
namics, lattice effects were important even 
with 107 lattice points. 

A primary goal of ecology is the under­
standing of population fluctuations. Our evi­
dence demonstrates that the traditional focus 
on continuous-state models is too narrow. 
Specifically, important effects in population 
dynamics due to the discrete nature of organ­
isms may be entirely missed by continuous-
state models, yet follow as straightforward 
predictions of lattice models. We suggest that 
a complete understanding of some population 
systems will require a blend of both contin­
uous-state and discrete-state models. 
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mas show up-regulated expression of two 
major histocompatibility complex (MHC) 
class I-related molecules, MICA and 
MICB, and are targets for cytolysis by in­
testinal TCR78+ IELs expressing NKG2d, 
a receptor for MICA and MICB (2). None­
theless, the capacity of either 78 cells or 
MICA to regulate malignancy in vivo is 
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The localization of 78 T cells within epithelia suggests that these cells may 
contribute to the down-regulation of epithelial malignancies. We report that 
mice lacking 78 cells are highly susceptible to multiple regimens of cutaneous 
carcinogenesis. After exposure to carcinogens, skin cells expressed Rae-1 and 
H60, major histocompatibility complex-related molecules structurally resem­
bling human MICA. Each of these is a ligand for NKG2d, a receptor expressed 
by cytolytic T cells and natural killer (NK) cells. In vitro, skin-associated NKG2d+ 

78 cells killed skin carcinoma cells by a mechanism that was sensitive to 
blocking NKG2d engagement. Thus, local T cells may use evolutionarily con­
served proteins to negatively regulate malignancy. 
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