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broadening the "lifting cloud base hypothesis" 
for biotic changes in Central American moun- 
tains, by providing an alternative mechanism- 
upwind deforestation of lowlands-that may 
increase convective and orographic cloud bases 
even more than changes in sea surface ternper- 
ature do. Cloud forests will differ in their sen- 
sitivity to upwind deforestation and sea surface 
temperature changes. On the one hand, inland 
cloud forests like those of southern Mexico 
may be profoundly influenced by regional de- 
forestation. On the other hand, coastal forests 
like those of some Caribbean islands (e.g., the 
Luquillo forest of Puerto Rico) may have too 
little upwind lowland to experience deforesta- 
tion impacts such as those we discuss. None- 
theless, these results suggest that current trends 
in tropical land use will force cloud forests 
upward, and they will thus decrease in area and 
become increasingly fragmented-and in many 
low mountains may disappear altogether. 
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In the absence o f  a comprehensive fossil record, the origin and early evolution 
of Malagasy lemurs have been subject t o  much uncertainty. We report here the 
discovery of a strepsirrhine fossil with strong cheirogaleid lemur affinities, 
Bugtilemur mathesoni gen. e t  sp. nov., from early Oligocene deposits of the 
Bugti Hills (Balochistan, Pakistan). Bugtilemur represents the earliest record of 
Lemuriformes, which hence appear t o  have already diversified outside of Mada- 
gascar at  least 30 million years ago. This fossil clearly enhances the critical role 
of the Indian subcontinent in  the early diversification of lemurs and constrains 
paleobiogeographic models of strepsirrhine lemur evolution. 

The endemic Malagasy lemurs (Lemuri-
formes) and the Afro-Asian lorises (Lorisi- 
formes) make up the living Strepsirrhini (I), 
the tooth-combed primates. Although these 
groups are widely diversified (2), their evo- 
lutionary history is still poorly documented. 
Lorisiforms have a limited fossil record ex- 
tending back to the Miocene in Africa and 
Asia (3, 4), whereas lemuriforms have so far 
remained unknown, with the exception of 
Malagasy subfossils. 

Recent field expeditions in the Bugti Hills 
(Balochistan, Pakistan) (Fig. 1) have led to 

the discovery of a fossiliferous lens of fluvio- 
deltaic sands at the Paali Nala locality in the 
lowermost levels of the Oligocene continen- 
tal sequence (5). Screen washings have yield- 
ed a diverse assemblage of marine, deltaic, 
and aquatic invertebrates and vertebrates, to- 
gether with terrestrial mammals (such as ro- 
dents, bats, insectivores, primates, carni-
vores, creodonts, artiodactyls, and perisso- 
dactyls). Primate fossils represent the second 
most diversified mammalian group after ro- 
dents. From several dozen isolated teeth, five 
new primate forms have been identified, in- 
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cluding anthropoids (amphipithecids and oli- acters: M1" without hypocone and conule, which is the Oligocene Omani adapiform 
gopithecids), adapiforms (sivaladapids), and. with strong, short, and distolingually directed 
the new lemuriform described here. postprotocrista, greater development of buc- 

Omanodon, previously closely compared (6) 
with cheirogaleids], in which the postproto- 
crista is buccally oriented to the metaconule 
or the metacone. The trigon is open distally, 
bearing a tiny and oblique metacrista, but it 
is bounded mesially by the preprotocrista, 
which is connected mesiolingually to the 
paracone. The postparacrista and premeta- 
crista are elevated, which is a derived 
shearing condition shared with Cheiro- 
galeus (Fig. 20). 

The P4 is triangular and waisted and 
shows a well-developed metacone and a pro- 

The new lemuriform is classified as fol- 
lows: Order Primates Linnaeus, 1758; Subor- 
der Strepsirrhini Geoffroy Saint-Hilaire, 
18 12; Infraorder Lemuriformes Gregory, 
19 15; Family Cheirogaleidae Gray, 1872; 
Bugtilemur mathesoni gen. et sp. nov. 

Holotype: DBC 2146 (Dera Bugti level 
C), isolated right M2 [temporarily at the Pa- 
leontology Department, University of Mont- 
pellier, France (Fig. 2L). 

Referred material: one right P2 DBC 2164 
(Fig. 2H)l; one right P3 [DBC 2150 (Fig. 201; 
two right P4 [DBC 2147 (Fig. 21) and 21551; 
one right M1 @BC 2145); two left M1 [DBC 
2156 and 2151 (Fig. 2K)l; two right [DBC 
2152 (Fig. 2M) and 21531; one left M2 @BC 
2154); one right Cl [DBC 2138 (Fig. 2C)l; one 
left P3 [DBC 2139 (Fig. 2D)l; two right P4 
@BC 2140 and 2159); one left P4 [DBC 2143 
(Fig. 2E)l; one left M, [DBC 2141 (Fig. 2F)l; 
one right M2 @BC 2142); and two left M, 
[DBC 2160 and 2161 (Fig. 2G)l. 

Horizon and type locality: Chitarwata 
Formation, Bugti Member (Fig. I), early Oli- 
gocene, Paali Nala C2 (DBC 2). 

Etymology: The genus name refers to the 
Bugti Hills and the species name is in honor 
of Sylvia A. Matheson for her contribution to 
the' understanding of the traditions of the 
Bugti tribes. 

Diagnosis: Small strepsirrhine primate of 
the size of the living dwarf lemur Allocebus. 

cal shearing crests, and distally open trigon; 
P4 molarized with strong metaconid and en- 
larged talonid; MI-, with mesiodistally nar- 
row trigonids bearing cuspidate lingual para- 
conid, mesiolingual protocristid-protoconid 
connection, short and lateral cristid obliqua, 
and continuous hypocristid. Differs from liv- 
ing cheirogaleid lemurs such as Allocebus, 
Mirza, Microcebus, and Phaner (except 
Cheirogaleus) in showing waisted triangular 
upper molars without hypocone, a continuous 
anterocingulum reaching the parastyle, and a 
low and oblique protocone with a short and 

truding protocone, as in Cheirogaleus. Al- 
though smaller, this tooth has a molariform 

lateral postprbtocrista, and in having a re- 
duced entoconid, a hypoconulid, a strong 

morphology. It differs from the molars in 
lacking the metacrista and the postproto- 

postprotoconid ridge,. an elevated paracristid, 
a lateral cristid obliqua on lower molars, and 
a molarized P,. Differs from Cheirogaleus 
and living lemurid lemurs (Varecia, Lemur, 

crista. P3 and P2 are high-crowned and single- 
cusped (paracone) and exhibit a triangular 
occlusal outline. 

The bilaterally flattened and slightly pro- 
cumbent tooth attributed to Bugtilemur (DBC 
2138, Fig. 2C), shows a scoop-shaped dorsal 
surface, which is similar to the lower canine 
(C,) included in the tooth comb of living 
strepsirrhines. However, this tooth is not as 
long-crowned, and the angle between the root 
and the crown is not as pronounced as in 
lemuriforms and lorisiforms. 

Although M, is much larger than MI, the 
dental organization of both teeth is similar. 
The lower molars are characterized by an 
enlarged talonid and by a mesiodistally 
pinched trigonid that is slightly higher than 

and Eulemur) in having a tiny, low, and 
oblique metacrista and a shorter postproto- 
crista on upper molars, small but distinct 
hypoconulid and entoconid, a paraconid, and 
a lingual talonid wall deeply notched on low- 
er molars, and differs only from lemurids in 
lacking a pericone on the upper molars. 

Description: M1 is similar to M2, except 
that M1 is slightly lingually wider and has a 
less protruding parastyle. Both teeth have a 
waisted triangular outline, lack conules and 
hypocone, and have a continuous lingual cin- 
gulum that extends buccally to the metastyle 

Differs from Adapiformes (adapids, sival- and parastyle. The protocone is oblique and 
adapids, and notharctids), Lemuriformes (liv- develops a short and distolingually oriented 

the talonid. A weak paraconid occurs mesial 
and well inferior to the metaconid. Despite 

ing Malagasy indrids and lepilemurids), postprotocrista. Such a derived arrangement 
Lorisiformes [living African galagonids and is unusual and resembles that in lemurids and 
Afro-Asian lorids, and the Miocene Pakistani the cheirogaleid Cheirogaleus (Fig. 20) but 
Nycticeboides (3)], and extant Tarsiiformes contrasts with the condition in other lemuri- 

the primitive retention of a paraconid, the 
lower molar trigonid shares derived charac- 
ters with lemuriforms that are not found 
among lorisiforms and Eocene adapiforms. In 

in having the following combination of char- forms, lorisiforms, or adapiforms [among Bugtilemur, the protoconid is widely spaced 
from the metaconid. and the ~rotocristid is 
connected mesiolingually to the protoconid, 
which is typical for lemuriforms. The proto- 
conid and the metaconid have a well-marked 
postprotoconid ridge and postrnetacristid re- 
spectively, as in Cheirogaleus (Fig. 2B) and 
lemurids. The paracristid is straight and 
transverse, but it presents a short buccal por- 
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Fig. 1. Location map of the new fossiliferous locality of Paali Nala, Bugti Hills (eastern Balochistan, 
Pakistan). See supplemental Web material for stratigraphic details (34). 
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tion that is mesially oriented, as observed in 
Cheirogaleus (Fig. 2B). The talonid is unusu- 
al in having a straight, short, and lateral 
cristid obliqua that runs to the base of the 
trigonid wall at a point distal to the postpro- 
toconid ridge on MI and M,. The lateral 
position of the cristid obliqua is characteristic 
of both Cheirogaleus and lemurids. Such a 
derived condition contrasts with that in adapi- 
forms, omomyiforms, and lorisiforms, in 
which the cristid obliqua reaches the trigonid 
wall distolingually to the protoconid or dis- 
tally to the metaconid (usually on MI in 
adapiforms). The hypoconid of M, and M, is 
mesiodistally enlarged and marginally locat- 
ed due to the lack of a buccal cingulid. The 
talonid is distally enclosed by a well-marked 
continuous vostcristid. which includes a 
prominent and median hypoconulid. The en- 
toconid is situated mesial to the hypoconid 
and is separated from the postmetacristid by a 
deep and narrow notch. 

The P4 displays a molariform structure in 
having a strong development of the meta- 
conid and hypoconid and a small entoconid. 
It differs from molars in showing a trigonid 
that is buccolingually narrower and higher 
than the talonid, a greater development of the 
postmetacristid and postprotoconid ridge, and 
a lack of the hypoconulid and paraconid. The 
presence of a broad talonid and strong post- 
protoconid and postmetaconid crests are de- 
rived conditions shared with Cheirogaleus. 
Such a molariform structure contrasts with 
that in other living cheirogaleids, in which 
the P4 is simple, single-cusped, and without 
an enlarged talonid. However, the tendency 
of a molarized P4 is also observed in some 
lemuriforms (Hapalemur), lorisiforms (Ga- 
lago), and adapiforms (for example, Leptada- 
pis, Adapis, and Miocene sivaladapids). The 
P, is reduced and single-cusped (protoconid) 
and develops a high and lateral paracristid 
and a low cristid obliqua originating from a 
minute hypoconid. 

Phylogeny: The evolutionary history and 
subsequent diversification of living strepsir- 
rhines are prominent questions in primate evo- 
lution. Strepsirrhine fossil affinities have long 
been questioned, pointing out the peculiar rela- 
tionships exhibited between lemuriforms (cir- 
cumscribed to Madagascar) and the extinct Pa- 
leogene adapiforms ("lemur-like"). Indeed, sev- 
eral possibilities for close phylogenetic rela- 
tionships (based on dental and postcranial 
comparisons) have been mooted, interpreting 
adapiforms as the sister group of lemuriforms 
(7), as nested clades originating within lemuri- 
forms (8), or as diict ancestors of lemuriforms 
(9,lO). It is now widely accepted [as supported 
by our phylogenetic results (Fig. 3A)] that le- 
muriforms and lorisiforms are more closely 
related to each other than either is to adapiforms 
(4, 11). Nonetheless, the phylogenetic position 
of the Malagasy Cheirogaleidae (the "dwarf 

and mouse lemurs") among living Strepsirrhini 
has long been subject to diverse interpretations, 
and it remains ambiguous in term of systematic 
and biogeographic implications. Cheirogaleids 
may be relatively close to the ancestral strep- 
sirrhine condition with respect to their global 
morphology, behavior, and ecology (12). Sev- 
eral morpho-anatomical studies (13-15) (main- 
ly shared cranial and vascular characters) indi- 
cate the existence of a cheirogaleid-loris clade, 
whereas molecular approaches (1,16) and total 
evidence (11, 17) consistently support a chei- 
rogaleid-lemur clade, thus corroborating the 
monophyly of Malagasy primates, in accor- 
dance with the traditional classification (18). 

The strepsirrhine phylogeny we propose 
here is based on dental evidence (Fig. 3A) 
and a combined analysis of dental and mor- 
pho-anatomical characters [DMAc's (Fig. 
3B)l. It provides further support for placing 
Cheirogaleidae within Lemuriformes rather 
than within Lorisiformes (19). From dental 
characters, Adapiformes [sampled with some 
European adapids and notharctids, Asian siv- 
aladapids, and the Afro-Arabian taxa Oman- 
odon (6) and Wadilemur (20) (previously 
compared with cheirogaleids)] represent the 
sister group of the Lemuriformes-Lorisi- 
formes clade (Fig. 3A). The new genus 
Bugtilemur exhibits a combination of dental 

characters that are unusual among Paleogene 
primates. The derived features we have de- 
scribed set Bugtilemur apart from Adapi- 
formes, Tarsiiformes, and Lorisiformes, but 
consistently point toward strepsirrhine lemur- 
iform affinities. In both dental and DMAc 
analyses (Fig. 3, A and B), Bugtilemur and 
the cheirogaleid Cheirogaleus form a clade 
nested within Lemuriformes. There is no sup- 
port for the monophyly of Cheirogaleidae 
from the dental data set (Fig. 3A): Bugtilemur 
and Cheirogaleus appear more closely related 
to lemurids (Eulemur, Varecia, and Lemur) 
than to other cheirogaleids (including two 
subclades, Microcebus-Mina and Phaner-Al- 
loceblrs). This result is not unexpected given 
that the general dental organization of Chei- 
rogaleus (and Bugtilemur) contrasts with that 
of other cheirogaleids (see diagnosis). How- 
ever, from the combined DMAc analysis, 
Cheirogaleidae are depicted as a monophy- 
letic taxon within Lemuriformes [with the 
same subclades as above (Fig. 3B)], in which 
Cheirogaleus (21) and Bugtilemur represent 
the earliest offshoots of the family. In that 
phylogenetic context, some of the dental fea- 
tures shared by Cheirogaleus, Bugtilemur, 
and Lemuridae might have evolved conver- 
gently within Lemuriformes. 

Discussion: Bugtilemur comprises the 

Fig. 2. Extant and Oligocene Lemuriformes. (A and B) and (N and 0) Modern Malagasy Lemuri- 
formes Cheirogaleidae (SEM micrographs of casts): Cheirogaleus major [MNHN 1653; (6) (left MI-,) 
and (0)  (right MZ-l) show details of (A) and (N), respectively]. (C to G) and (H to M) Bugtilemur 
mathesoni gen. et sp. nov.: DBC 2138 [(C) occlusal view] right C, [length (mm) by width (mm), 2.82 
by 1.31; DBC 2139 (D) left P, (2.08 by 1.18); DBC 2143 (E) left P4 (2.45 by 1.5); DBC 2141 (F) left 
M, (2.25 by 1.53); DBC 2161 (G) left M, (2.50 by 1.78); DBC 2164 (H) right PZ (1.74 by 1.35 ; DBC 1 2150 (I) right P3 (1.9 by 1.53); DBC 2147 (J) right broken P4 (- by 2.09); DBC 2151 (K) left M (2.33 
by 2.66); DBC 2146 (L) right MZ, holotype (2.34 by 2.5); DBC 2152 (M) right MZ (2.27 by 2.44). Scale 
bar, 1 mm. [Drawings from L. Meslin]. 
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only unequivocal evidence for lemuriforms 
outside the remote island of Madagascar at 
least since the early Oligocene. One of the 
most enigmatic questions in primate evolu- 
tion is when and how strepsirrhine lemurs 
first arrived in Madagascar, and their unex- 
pected presence on the Indian subcontinent 
provides a greater puzzle. The breakup of 
Madagascar and Greater India occurred about 
88 million years ago (22) (in the middle Late 
Cretaceous). Even if recent molecular studies 
(1) infer an initial loris-lemur split at 2 6 2  
million years ago (Ma) and a lemur radiation 
at 2 5 4  Ma, and more precisely a Middle 
Eocene age (37.9 to 46.5 Ma) for the lepile- 
murid, cheirogaleid, indrid, and lemurid 
clade ( I I ) ,  the water barrier separating both 
land masses was already important at that 
time. An earlier time of divergence between 
the Indian and Malagasy cheirogaleids might 
be compatible with a possible vicariance hy- 
pothesis. Some recent molecular phylogenies 
(23) assume that primates originated far ear- 
lier [around 90 Ma for the origin of primates 
and 87 Ma for the origin of strepsirrhines 

Fig. 3. Assessment of the phylogenetic po- 
sition of the new Oligocene primate speci- 
men, Bugtilemur mathesoni gen. et sp. nov. 
(A) Within a taxonomic framework com- 
prising Tarsiiformes, Adapiformes, Lorisi- 
formes, and Lemuriformes. Single tree 
(Length, 1138; CI, 0.276; RI, 0.485) from 
dental characters. (8) Within a taxonomic 
framework comprising only Lorisiformes, 
Lemuriformes, and Tarsiiformes. Single tree 

(24)] than the fossil record indicates so far 
(around 55 Ma). In that context, Indian and 
Malagasy lemurs could be interpreted as de- 
rived residues of an ancestral common stock 
distributed on the Cretaceous Indo-Malagasy 
block. However, the important number of 
synapomorphies uniting Bugtilemuv and the 
extant Cheivogaleus is not consistent with 
such an early divergence, and a more recent 
time of divergence seems alternatively more 
relevant. In this way, a migration of lemurs 
should be expected, implying that a dispersal 
route between Madagascar and the drifting 
Greater India may have taken place after the 
breakup. Although the geological evidence 
would tend to negate such a derivation, it has 
been proposed that terrestrial Malagasy gas- 
tropods were able to colonize India during the 
Tertiary (25). The Eocene Mascarene and 
Indian (Chagos-Laccadive) paleoridge sys-
tems might have been involved in potential 
filter or sweepstakes dispersal routes for le- 
murs. A pertinent question then arises about 
the direction of that migration, which de- 
pends on the geographic location considered 
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wherein strepsirrhine were likely to have 
originated. Taking into consideration phylog- 
enies ( 1 ,  11,  12, 1 7 ) ,  biogeography ( 1I), and 
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lemuriform to Madagascar (26, 2 7 )  and a 
subsequent northward migration of an ances- 
tral Malagasy cheirogaleid to India. Howev- 
er, the fact that pre-Late Pleistocene conti- 
nental deposits are \.irtually nonexistent on 
Madagascar makes uncertain an old occur-
rence of lemurs on the island. The same 1s 

true for India, where the limited Paleogenc 
fossiliferous localities have so far failed to 
recover any lemur or loris evidence. Bugti-
lemur represents the first, notably early. 
record of lemurs. Although the possibility 
that India may have been the source of pri- 
mate colonizers of Madagascar (28-30) has 
until recently seemed unlikely (I. 11. 31).the 
alternative hypothesis involving an Asian or-

(Length, 953; CI, 0.4; RI, 0.508) derived from 
the combined DMAc analysis (dental, mor- 
pho-anatomical characters). Bootstrap and 
Decay Index values are given Left and right 
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igin for the loris-lemur clade cannot be ruled 
out (24) in the light of this new discovery. A 
similar scenario (adapted from molecular 
data) has been suggested for endemic Mala- 
gasy rodents (32). 

The possibility that lemuriforms and 
lorisiforms originated in Asia rather than in 
Africa cannot be rejected without further 
paleontological evidence from both conti- 
nents and from Madagascar. It must, how- 
ever, be emphasized that their origin is 
undoubtedly as ancient as that of adapi- 
forms (Fig. 3A). The discovery of a chei- 
rogaleid-like lemur in Oligocene deposits 
of Pakistan suggests that whatever the tim- 
ing and direction of faunal dispersions, 
South Asia was, as for anthropoids (33), an 
important theater of early strepsirrhine evo- 
lution, reflecting the complex role played 
by the drifting Greater India in the evolu- 
tionary history of Malagasy lemurs. 
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Caenorhabditis elegans p53: 
Role in Apoptosis, Meiosis, 

and Stress Resistance 
W. Brent Derry,* Aaron P. Putzke, Joel H. Rothman 

We have identified a homolog of the mammalian p53 tumor suppressor protein 
in  the nematode Caenorhabditis elegans that is expressed ubiquitously in  em- 
bryos. The gene encoding this protein, cep-7, promotes DNA damage-induced 
apoptosis and is required for normal meiotic chromosome segregation in  the 
germ line. Moreover, although somatic apoptosis is unaffected, cep-7 mutants 
show hypersensitivity t o  hypoxia-induced lethality and decreased longevity in  
response t o  starvation-induced stress. Overexpression of CEP-1 promotes wide- 
spread caspase-independent cell death, demonstrating the critical importance 
of regulating p53 function at  appropriate levels. These findings show that C. 
elegans p53 mediates multiple stress responses in  the soma, and mediates 
apoptosis and meiotic chromosome segregation in  the germ line. 

The p53 tumor suppressor is among the 
most frequently mutated genes in human 
cancer and plays a critical role in maintain- 
ing genomic stability by regulating cell 
cycle progression and apoptosis in response 
to DNA damage (1, 2). Analysis of the 
mechanisms through which p53 integrates 
the cellular response to stress and damage 
in vivo has been limited by the absence of 
a genetic system. Recently, a p53 homolog 
was shown to participate in apoptosis in- 
duced by genotoxic stress in Dvosophila 
(3-5) on the basis of forced expression of 
dominant negative forms; however, the or- 
ganism-wide role of the gene could not be 
assessed in these experiments. 

Standard searches of the genomic se-
quence suggested that C. elegans does not 
have a p53-like gene (6) .  However. using 
additional algorithms, we identified a C. el-
egans gene encoding a protein with signature 
sequences common to the p53 family, includ- 
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ing the residues most frequently mutated in 
human cancers (7). The cDNA sequence of 
this gene, cep-1 (denoting C. elegans p53- 
like-I), predicts a 429-amino acid protein 
that is similar to the human protein in the 
NH,-terminal transactivation domain and the 
highly conserved DNA binding domains 
(Fig. 1). CEP-1 appears to be the only p53 
family member encoded in the C. elegans 
genome, which suggests that p53 paralogs 
(including p63 and p73) may have evolved 
from a single ancestor related to CEP-1. 

To assess the in vivo function of cep-1, we 
isolated a chromosomal rearrangement, cep- 
l(w40) (8).  This mutant strain contains an 
intact copy of cep-1 at its normal genomic 
location; the cep-I($t~40) mutant gene, which 
encodes a truncated protein lacking the DNA 
binding domain, is translocated elsewhere in 
the genome. Although they exhibit impen- 
etrant (-2%) embryonic lethality, cep-
l(w40) mutants are generally viable and fer- 
tile. Moreover, depleting cep-1 function by 
RNA interference (RNAi) (9) similarly leads 
to im~enetrant embryonic lethality (Table 1). 
It is likely that RNAi results in a strong 
loss-of-function phenotype, as it eliminates 
detectable expression of a CEP-1::GFP 
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