
Modeling-A Tool 
for Experimentalists 

tal energy any further, the structure has reached an energy mini-
murn and the geometry optimization of the model is con~plete. 

Structure tlredictions usually use molecular mechanics, where 
equations from classical physics and empirically derived parameters 
describe molecular bonding. This hybrid atlproach to molecular 

I - . . 
structure quickly yields accurate three-dimensional (3D) structures. 

Rornas Kazlauskas The parameters for each molecular fragment include atom size, opti-
1 1 l h a t  does a molecule look like and what can it do? mal bond lengths, and optimal 3D orientation. This approach as-w Chemists have answered such questions with experi- sumes that the molecular building blocks, known as atom types, in 

ments and, increasingly, with theoretical methods. one molecule interact the same way when they are present in adiffer-
Molecular modeling is a theoretical method that comprises a broad ent molecule. For organic molecules, structures predicted by molecu-
range of computer methods which allow chemists to display lar mechanics agree well with experimental measurements. Determi-
molecules, predict their structures, make short movies of their mo- nations of protein structure by x-ray crystallography or by nuclear 
tions, predict how they bind to each other and react with each othcr magnetic resonance (NMR), for example, use molecular modeling to 
(I).As this method becomes more routine and more reliable, exper- optimize the fit of structures to the experimental data (2). 
imentalists are using it more frequently to guide and improve ex- One challenge in geometry optimization is finding the most stable 
periments and to construct solutions to questions that are impossi- structure, the global minimum. Molecules adopt many stable structures 
ble to examine experimentally. or local minima. which differ by rotations about single bonds (see fig-

The simplest application of modeling is molecular visualization, ure below). Geometry optimization finds minima by making small 
which is the use of computers to display molecular structures mea- changes in theoretical structures to yield the closest stable structure on-
sured experimentally. Not only are they easier to build and storc than ly. which is not necessarily the most stable structure. Rcscarchers use 
plastic models, computer models can both sim-
plify and highlight molecular features. For ex- A 
ample, a schematic tracing of a protein chain 
simplifies a complex protein structure, whereas 
a space-filling representation of the binding 
site emphasizes its shape and a stick represen-
tation of a bound molecule emphasizes its 
chemical structure. Each type of image serves as an ensemble 

a different purpose. 
All modeling involves approximations, 

Different conformations ----t 
even the most advanced theoretical methods. 
The key to effective modeling is to include 

Optimizing molecule geome-enough detail in the model to accurately de- --+ try t o  f ind  t he  lowest energy
scribe the phenomenon in question, but to valleys. A potential energy sur-
omit details that waste computer time or add face contains many local mini-
needless complexity that doesn't add to the ma (stable structures), the low-

With a good the est of which is the global minimum (the most stable structure). The minima differ by rotations 
simplest questions can be answered by dis- about single bonds. The potential energy surface shown here illustrates two degrees of freedom, 
playing the structure of the molecules in- but real molecules may contain degrees of freedom on the order of tens to  thousands. 
volved. More complex problems, however, 
require the simulation of a process, such as molecular motion. additional methods to make larger changes in structure that can cross 
Quantitative predictions of binding or reactivity usually cannot be an energy barrier and find the global minimutn. For small n~olecules.a 
obtained from a single structure and may require examination of systematic search of the possible rotations about single bonds reveals 
hundreds or thousands of low-energy structures. Further, chemical the global minimum. For larger molecules or biomolecules, the num-
reactions involve bond making or breaking, which can only be ber of bond rotations required for a systematic search is enormous. 
modeled using quantum mechanics. rendering such a scarch impractical. For these molecules, researchers 

Modeling starts with a crude sketch of the molecule that is use either a random scarch or n~olcculardynamics. 
then optimized geometrically. In this process, the computer at- Molecular dynatnics involves the creation of  a very short 
tempts to assign an optimal orientation to each atom. To accom- movie of molecular motions. The researcher chooses the degree of 
plish this, an energy cost is assigned to each nonoptimal orienta- motion by setting the temperature. The atoms move as a function 
tion, such as a compressed bond angle or an interaction of two of both molecular mechanics forces and of their motion in thc pre-
atoms bumping against each other. The total energy o f  thc vious step. These movies show a chaotic jiggling of atoms and 
molecule, or its strain, is the sum of all these costs. The computer conformational changes of the molecule. Cooperative motions are 
program iteratively adjusts the bond lengths and angles to lower included because the forces of molecular mechanics allow one 
the total energy. When structure adjustments cannot lower the to- group to avoid collision with another. By checking the energy of 

new conformations created by molecular dynamics, researchers 
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the global minimum. For example, conformational searching can- 
not predict a protein's 3D structure from its amino acid sequences 
because the number of possibilities overwhelms today's comput- 
ers (the protein folding problem). 

Another example where one searches for the best structure is 
docking, which analyzes how, say, a drug candidate binds to a 
protein target. Lam et al., for example, used docking to test possi- 
ble orientations of drug candidates during their development of 
an H N  protease inhibitor (3). 

Modeling aids the interpretation of experimental results by ex- 
plaining why one enzyme is more selective than another. The x- 
ray structure of a nonselective lipase, for example, shows a wide 
substrate-binding pocket, but that of a selective lipase depicts a 
pocket twisted to one side (see figure at right) (4). Modeling 
shows which substrate would fit snugly into the selective lipase 
but not the nonselective one. In other cases, deciding whether a 
substrate "fits" requires a more careful look at the structural de- 
tails. For example, Schulz et al. correlated the observed reactivity 
of a substrate with the length of a key hydrogen bond between the 
substrate and the enzyme (5). 

Using modeling alone in protein engineering to predict muta- 
tions that would alter enzyme function is difficult because the mu- 
tation must not disrupt enzyme stability or catalysis. But experi- 
mental methods, like random mutagenesis and screening, suffer 
from the need to test enormous numbers of mutants. An alternative 
is to combine modeling and experimentation to identify which mu- 
tations cause desired changes but retain catalytic activity and stabil- 
ity. Li et al. used this approach to extend the substrate range of a 
P450 enzyme to shorter substrates (6). Whereas the wild type 
showed no activity on fatty acid analogs with chain lengths shorter 
than C,o, a variant with five mutations catalyzed efficient hydroxy- 
lation of a shorter fatty acid analog, .Cs Horsman et al. used this 
approach to dramatically increase the enantioselectivity of an es- 
terase (7) from 12:l to 60: 1 by changing a single amino acid. 

To make quantitative predictions with the use of modeling, 
one usually needs to include many low-energy structures in pre- 
diction, not just one. Molecules do not exist as a single structure 
but rather as an ensemble of rapidly equilibrating structures, all of 
which contribute to an aggregate behavior. Another way to think 
about the importance considering of many structures instead of 
one is to recall that rates of reaction and selectivities depend on 
free energies. Free energies consist of enthalpy (heat content) and 
entropy (disorder). Therefore, one must include multiple struc- 
tures in order to include entropy (8). 

To predict the different binding of enantiomers to several 
hosts, Aerts generated 5000 different complexes using molecular 
dynamics and optimized each complex geometrically to generate 
two sets of compounds (9). He compared all the lowest energy 
compounds from one set with the all the lowest energy com- 
pounds from another to correctly predict which interaction is 
stronger on average. Aerts reasoned that each enantiomer would 
be solvated by the same amount such that the solvent contribution 
would cancel out, and could therefore be ignored. 

In other cases, however, one must include solvent as a consider- 
ation. The strands in a DNA double helix modeled without solvent 
would separate in a molecular dynamics simulation, but when wa- 
ter molecules are included in the model as a solvent, the helices re- 
main together. Similarly, modeling an a helix without water incor- 
rectly predicts that it would remain stable upon heating, but model- 
ing with water predicts the experimentally observed unfolding. 

An exhaustive search of all possible conformations is not prac- 
tical for many large biomolecules, quantitative predictions are 
difficult to make. Haefier et al. (10) simplified the problem by 

focusing on a part of a structure (the reactive region of a sub- 
strate-enzyme complex) and restricting its energy calculation to a 
few residues. In this way, they obtained models that agreed well 
with experimental data. 

Molecular mechanics cannot model all chemical reactivity ac- 
curately because it fails to take into account the wave nature of 
matter. Quantum mechanics can be used to help measure this, but 
the complexity of these calculations limits this approach to tens 
of atoms, or at most several hundred. To model a reaction, re- 

searchers use yet another 
combined approach: quan- 
tum mechanics to model 
the reacting portion and 
molecular mechanics to 
model the rest of the 
molecules and the solvent. 
With this approach, Eks- 
terowicz and Houk (11) 
explained the selectivity of 
numerous important cata- 
lysts in organic synthesis. 
Monard and Merz (12) 
modeled the structure and 
the distribution of electri- 
cal charges in the active 

Medium pocket site of carbonic anhydrase; 
an approach using only 
molecular mechanics did 

Snug as a substrate in a lipase. The not yield a stable model. 
substrate-binding site of the lipase zheng et al. (13) used 
(shown in this space-filling representa- modeling to distinguish 
tion) contains a large pocket that tilts to between two mechanisms 
the right. This tilt matches the orienta- where the experimental ev- 
tion of a large group in  the substrate 
(represented with a stick illustration). idence was ambiguous. 

Image created with the use of the pro- The most productive 

gram RasMol (www.umass.edu/microbio/ strategies in are 
rasmov). Reprinted in part with permis- a of experi- 
sion from the Journal of Organic Chem- ment and Exper- 
istry 66, 3041 (2001). Copyright 2001, iments are too and 
American Chemical Society. too expensive for exhaus- 

tive optimization. Model- 
ing is not yet accurate enough or fast enough to consistently pre- 
dict behavior; it is, however, increasingly able to predict or ex- 
plain experimental results. Because of these improvements, cou- 
pled with easier modeling methods due to faster computers and 
better software, experimentalists increasingly use modeling to fo- 
cus, guide, and interpret experiments. Modeling is becoming a 
tool for experimentalists, not just theoreticians. 
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