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studies, the absolute level of IL-2 varied be­
tween donors. For each of the cell populations 
from four donors (Fig. 4A), mutation of the nef 
gene resulted in diminished T cell sensitization. 
There remained a varied viral-mediated sensi­
tization with the Nef-negative virus, presum­
ably because of Tat. Both HIV infection and 
either Tat or Nef expression in primary cells 
result in increased T cell activity as defined by 
IL-2 (12,14,15), and these enhancements have 
been shown to vary with the donor by yet-
unidentified mechanisms. 

The ability of HIV to promote an active 
state in quiescent T cells would be expected to 
also positively influence viral replication from 
infected resting cells. Compared to the wt HIV, 
the Nef-negative virus had a similar infectivity 
in preactivated T cells for single-cycle viral 
production (Fig. 4B). However, the infection of 
quiescent cells, followed by a 5-day resting 
state before activation, resulted in an increase in 
viral replication when a functional nef gene was 
present (Fig. 4C). This increase in viral synthe­
sis is due to Nef alone, and unlike the IL-2 
study above, the comparison does not include 
the effect of Tat expression on viral replication 
from resting T cells. It also differs from the IL-2 
study in that the generated data do not include 
the activity of uninfected cells. We also found 
that if the 5-day preactivation incubation, dur­
ing which the viral gene products are synthe­
sized, is eliminated, the enhancement is lost, 
with wt and Nef-negative virions yielding sim­
ilar viral production (Fig. 4D). 

This Nef-mediated effect is in addition to 
the previously characterized increase in viri­
on infectivity (25-27). Whereas the increase 
in infectivity is manifest before viral gene 
expression in the newly infected cell (20, 28, 
29), the positive effect on viral output from 
quiescent T cells is dependent on viral gene 
activity in the newly infected cell. 

Our ability to detect two of the multiply 
spliced transcripts, «efand tat, but not the third, 
rev, suggests that the demonstrated singly 
spliced transcript for env in resting T cells (Fig. 
2D) is not likely to become transported to the 
cytosol (30). About 80% of the singly spliced 
env message is spliced at the nef site (22), and 
in*-our system this env transcript may be a 
precursor to the doubly spliced nef transcript. 
Our findings are in part corroborated by previ­
ous work, in which reverse-transcribed DNA or 
gene transcription by integrase mutants has 
been indicated (3,5,24,31). Because cell-cycle 
progression of primary T cells past the G la 

stage is essential for HIV reverse transcription 
(32), we presume that our population, although 
not supportive of viral replication, includes 
cells at various stages as found in vivo. 

Beyond the potential to alter resting T cells 
in vivo, the capacity of preintegration transcrip­
tion by HIV raises other issues. HIV may be 
able to affect cell function in the absence of 
productive infection, such as in nonlymphatic 

cells where binding and entry (but not integra­
tion) can occur. Moreover, the extensive pres­
ence of unintegrated HIV DNA in T cells of 
infected individuals may have an underappre­
ciated bioactivity. Last, with the ability to tran­
scribe in the absence of proviral formation, HIV 
could induce cytotoxic T lymphocyte recogni­
tion and destruction of a cell that is not repli­
cating virus particles. 
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However, previous results are also consistent 
with the possibility that the LOC instead 
represents low-level information about visual 
contours. The two hypotheses are difficult to 
distinguish because contours are always 
present in images of objects. However, con­
tour and shape information are not the same 
thing: A given shape can be represented by 
more than one set of local contours (Fig. 2A), 
and a given set of contours can represent 
more than one shape (Fig. 2B). The present 
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The human lateral occipital complex (LOC) has been implicated in object 
recognition, but it is unknown whether this region represents low-level image 
features or perceived object shape. We used an event-related functional mag­
netic resonance imaging adaptation paradigm in which the response to pairs of 
successively presented stimuli is lower when they are identical than when they 
are different. Adaptation across a change between the two stimuli in a pair 
provides evidence for a common neural representation invariant to that change. 
We found adaptation in the LOC when perceived shape was identical but 
contours differed, but not when contours were identical but perceived shape 
differed. These data indicate that the LOC represents not simple image features, 
but rather higher level shape information. 
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study used these two contrasting cases to test 
whether the LOC represents low-level con- 
tour information, or higher lcvel information 
about object shape. 

Our experiments make use of a neural 
adaptation effcct in which responses are low- 
er for stimuli that have been viewed recently 
than for stimuli that have not (7, 8). Because 
adaptation depends critically on the sameness 
of two stimuli, it provides a technique for 
asking what counts as the same to a particular 
neural population-that is, what information 
is included in the representation and what 
information is not (8, 9). For example, it has 
been shown that adaptation occurs in the 
LOC even when objects arc presented in 
different locations or sizes, indicating that the 
representations in this region are largely in- 
variant to changes in size and location (9). 

We used an event-related (7. 10) adapta- 
tion paradigm in which each trial consisted of 
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a pair of images presented sequentially (11). 
If neural populations in the LOC represent 
object shape but not the contours defining the 
shape, then we should observe adaptation 
when the two stimuli in a trial have the same 
perceived shape even if they have different 
contours (Fig. 2A). Conversely. if neural 
populations in the LOC represent information 
about contours but not perceived shape, then 
we should observe adaptation when the two 
stimuli have identical contours even if they 
have different perceived shapes (Fig. 2B). 

A region of interest (ROI) comprising the 
LOC was identified individually for each 
subject as the set of all contiguous voxels in 
the ventral occipitotemporal cortex that were 
activated more strongly (P < by intact 
than by scrambled images of objects present- 
ed in two localizer scans, as described previ- 
ously (6) (Fig. I). The magnitude of the 
response in this ROI was then measured for 
each subject in each condition in two main 
experiments. 

Each of thc main experiments included an 
Identical condition (in which the two stimuli 
in a pair were idcntical in all respects) and a 
Completely Different condition (in which the 
two stimuli differed in perceived shape, con- 
tours, and depth relations). These two condi- 
tions provided upper and lower reference 
points to which we could compare the re- 

sponse for the critical condition in each ex- 
periment: in experiment 1, the Same Shape 
condition (in which the two stimuli had dif- 
ferent contours and different depth relations 
as shown in Fig. 2A), and in experiment 2, 
the Same Contours condition (in which the 
two stimuli had different perceived shapes 
and different depth relations as shown in Fig. 
2B). A fourth Same Depth condition in each 
experiment (in which the two stimuli had 
different contours and different perceived 
shape, but the same depth relations) enabled 
us to measure any adaptation for sameness in 
depth relations alone. We computed the time 
course of percent signal change from the 
fixation baseline separately for each of the 
four stimulus conditions in each of the 10 
subjects in each experiment, as described pre- 
viously (6). The average across subjects of 
these time courses of response for each con- 
dition are shown in Fig. 3 (experiment I )  and 
Fig. 4 (experiment 2). The response was sig- 
nificantly lower for the Identical than for the 
Completely Different conditions in both ex- 
periments at time points 4, 5, and 6 (IZ), 
replicating our previously reported event- 
related adaptation effect (6). 

The goal of experiment 1 was to investi- 
gate whether sameness of perceived shape is 
sufficient for adaptation in the LOC by test- 
ing responses to stimuli that had the same 

Fig. 1. Nine consecutive slices from one subject showing regions re- 
sponding significantly more strongly to intact images of objects (300 
pixel by 300 pixel gray-scale images and line drawings of familiar and 
novel objects) than to control images in which the images of objects 
have been divided into squares with a 20 by 20 grid and the component 
squares have been randomly rearranged within three concentric rings 
around the fixation point. Significance maps reflect the results of linear 
regression (r 2 0.3) of the fMRl signal intensity to the stimulus protocol 
for viewing of intact objects versus scrambled objects. The right hemi- 
sphere appears on the left. For each subject the LOC was identified as the 

set of all voxels that produced a significantly higher response to intact 
than to scrambled objects in the ventral occipitotemporal cortex. These 
voxels, marked by the yellow circles, sewed as the ROI for analyzing the 
data from the event-related adaptation scans in this subject. Note that 
despite the name "Lateral Occipital Complex" this region extends well 
into ventral and temporal regions. When the analyses reported here were 
carried out separately for the more anterior regions and the more 
posterior regions. the pattern of responses was very similar, indicating 
that the functions described here were found throughout this rather large 
region of cortex. 

Fig. 2. D.isplays illustrating 
the critical conditions in ex- 
periments 1 and 2. (A) Same 
Shape condition in which the 
two stimuli in a trial depicted 
the same shape but had dif- 
ferent local contours due to 
occlusion and stereoscopic 
depth cues. (B) Same Con- 
tours condition in which the 
two stimuli in a trial had the 
same contours but different 
shape due to stereoscopi- 
cally induced figure-ground 
reversal (F indicates the fig- 
ure for each stimulus). The disparity value was 0.2" in both experiments. 
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perceived shape but different contours (Same peak of the hemodynamic response (4 to 6 s 
Shape condition) due to occlusion (Fig. 2A). after trial onset) in the critical Same Shape 
As shown in Fig. 3, the mean signal at the condition was significantly lower [F(l, 87) = 

5.5, P < 0.051 than that in the Completely 
Different condition, but not significantly dif- 
ferent [F(l, 87) < 1, P = 0.831 from that in 
the Identical condition (Fig. 3). Thus, adap- 
tation for pairs of stimuli with the same per- 
ceived shape but different contours was as 
strong as that for identical images. These 
results suggest that the LOC represents per- 
ceived shape, rather than image contours. 

Beyond its implications for shape repre- 
sentations in the LOC, experiment 1 also 
provides some clues about what other in- 
formation may be represented in the LOC. 
In particular, a reversal in depth relations 
between the two stimuli in a trial had no 

A Completely different + 

B Same depth + 

C Same shape -t- 

effect on responses in the LOC, compared 
with conditions in which depth relations 
were not reversed; that is, no differences 
were found in the peak responses in the 
Same Shape [F(l,  87) < 1, P = 0.831 
versus Identical conditions, or the Com- 
pletely Different versus Same Depth con- 
ditions [F(l,  87) = 1.2, P = 0.271. These 

Fig. 3. Stimuli and results for experiment 1. The stimuli were images of I 1 I 
novel shapes behind or in front of occluding bars rendered as red-green 
anaglyphs and presented stereoscopically to the subjects through red-green glasses. The critical 
condition was the Same Shape condition where the two objects in a trial had the same shape but 
different local contours. The results reported are average percent signal increases (from the fixation 
baseline trials) within the LOC for each condition. Trials start at time = 0 s. The error bars indicate 
standard errors of the percent signal change measured across all trials for each stimulus condition 
averaged across all scans and subjects. Early retinotopic regions bordering the calcarine sulcus did not 
show adaptation for any of the experimental conditions; that is, no main effect of Shape Condition [F(3, 
297) < 1, P = 0.421 and no significant interactions between Shape Condition and Time [F(30, 297) < 
1, P = 0.571 were observed. 

results are consistent with other evidence 
(6) suggesting that depth information may 
not be represented in the LOC. 

In sum, experiment 1 demonstrates that 
sameness of perceived shape can be sufficient 
to cause maximal adaptation in the LOC, 
even when the two stimuli have substantially 
different low-level contours. Our second ex- 
periment tested whether sameness of per- 
ceived shave is necessary for adaptation in 
the LOC. i f  it is, no adaptation should be 
observed for the Same Contour condition, in 
which stimulus pairs share the same contours 
but depict different shapes because of a fig- 
ure-ground reversal (Fig. 2B). 

The time course of the response of the 
LOC to each of the conditions in experiment 
2 is shown in Fig. 4. No adaptation was 
observed in the LOC for the Same Contour 
condition; that is, the response in the Same 
Contours condition was not significantly low- 
er [F( l ,  87) = 3.3, P = 0.071 than the 
response in the Completely Different condi- 
tion, yet was significantly higher [F(1, 87) = 

12.1, P < 0.001) than the response for the 
Identical condition. Evidently, sameness of 
contours was not sufficient to produce adap- 
tation in the LOC. 

Two lines of evidence argue against an 
account of our findings in terms of greater 
attentional engagement in the shape-change 
conditions. First, one would expect changes 
in depth relations to be at least as salient as 
changes in shape, yet they do not produce 
recovery from adaptation in the LOC 
(whereas shape changes do). Second, we 
ran four additional subjects on new ver- 
sions of experiments 1 and 2 in which each 
stimulus moved very slightly vertically or 
diagonally (4S0), and subjects indicated 
whether the two stimuli in a pair moved in 
the same or different direction. The sub- 

Snme death & 

Same contours - 

- -0.05~ Time (sec) 

Fig. 4. Stimuli and results for experiment 2. The rectangular stimuli 
were divided by an irregular contour that resulted in two different 
shapes within each rectangle, one of which was presented stereoscop- 
icallv as the front land hence the firrurel and the other one as the back 
(and hence the ground). To faciitate the segmentation between 
figure and ground, we used different contrasts for the two shapes in the rectangle. The letter 
F indicates which shape appeared in front in each image. The critical condition was the Same 
Contours condition where the two displays in a trial had the same contours but depicted 
different shapes. The results reported are average percent signal increases (from the fixation 
baseline trials) within the LOC for each condition. Trials start a t  time = 0 s. The error bars 
indicate standard errors of the percent signal change measured across all trials for each 
stimulus condition averaged across all scans and subjects. Early retinotopic regions bordering 
the calcarine sulcus did not show adaptation for any of the experimental conditions; that is, 
no main effect of Shape Condition [F(3, 297) < 1, P = 0.861 and no significant interactions 
between Shape Condition and time [F(30, 297) < 1, P = 0.531 were observed. 
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jects' performance on this task was similar 
across conditions (identical, 68%; com-
pletely different, 71%; same depth, 69%; 
same shape, 68%; same contours, 72%). 
Despite the attention to each stimulus re- 
quired by this task, the pattern of data from 
these four subjects closely matched the 
findings from the main experiments. Thus, 
our findings apparently reflect neural adap- 
tation to shape repetitions rather than fluc- 
tuations in attentional engagement. 

In summary, we found that sameness of 
perceived shape (but not of low-level con-
tours) is necessary and sufficient for adapta- 
tion in the LOC. Evidently, neural popula- 
tions in the LOC represent object shape rather 
than the low-level features defining the 
shape. 

How abstract are these shape representa- 
tions? The present results indicate that the 
LOC contains representations in which con- 
tours have been completed (experiment 1) 
and figure-ground borders have been as-
signed (experiment 2) (13-16). Evidence that 
object representations of this kind play a 
central role in visual cognition comes from 
developmental studies showing that infants 
only a few months old complete representa- 
tions of objects behind occluders (1 7), and 
psychophysical experiments on adults sug- 
gesting that such completed representations 
determine the allocation of visual attention 
(18, 19). Other functional magnetic reso-
nance imaging (fMRI) studies have shown 
responses in the LOC for shapes defined by 
different form cues (texture, stereo, motion) 
(4, 5) and adaptation across changes in size 
and position, but little adaptation across 
changes in viewpoint and illumination (9). 
Taken together, these results make important 
progress in situating the LOC on a continuum 
of possible shape computations: After con-
tour completion, border ownership, and in- 
variance to form cues, size and position have 
been attained, but before invariance to view- 
point and illumination has been achieved. 

The shape representations in the LOC re- 
semble those found in inferotemporal cortex 
in monkeys. In particular, in the monkey 
brain, contours are completed and borders are 
assigned in early visual areas (20,21), where- 
as shape-selective neurons invariant to form 
cues (22, 23), as well as to location and size 
but not to viewpoint (24), are observed in 
inferotemporal cortex. 

Important questions remain. Are the 
representations in the LOC more like rep- 
resentations of visual surfaces (25), struc- 
tural descriptions of objects in which part 
structure is made explicit (26), sets of mod- 
erately complex features (27) or image 
fragments (28), or yet some other kind of 
shape representation? Does the cortical 
neighborhood of the LOC hold several 
qualitatively distinct representations that 

may constitute intermediate stages in the 
derivation of shape representations? The 
present study provides both an important 
first step and a powerful tool for answering 
these long-standing questions, which are at 
the very core of current theories of object 
recognition. 
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