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P-Amyloid plaques and neurofibrillary tangles (NFTs) are the defining neuro- 
pathological hallmarks of Alzheimer's disease, but their pathophysiological 
relation is unclear. Injection of 0-amyloid AP,, fibrils into the brains of P301L 
mutant tau transgenic mice caused fivefold increases i n  the numbers of NFTs 
in  cell bodies within the amygdala from where neurons project t o  the injection 
sites. Gallyas silver impregnation identified NFTs that contained tau phospho- 
rylated at  serine 212Ithreonine 214 and serine 422. NFTs were composed of 
twisted filaments and occurred i n  6-month-old mice as early as 18 days after 
A@,, injections. Our data support the hypothesis that AP,, fibrils can accelerate 
NFT formation in  vivo. 

Transgenic mice that express P301L mutant 
human tau form abnormal tau-containing fila- 
ments in brains (1, 2). These filaments have 
s t r i h g  similarities with the NFTs of several 
human neurodegenerative diseases, including 
Alzheimer's disease (AD) and frontotemporal 
dementia with parkinsonism linked to chromo- 
some 17 (FTDP-I?), but their numbers are 
considerably lower than these commonly found 
in human disease (3). To determine whether 
P-amyloid can accelerate NFT formation, we 
injected synthetic A@,, fibrils into the somato- 
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sensory cortex and the hppocampus of 5- to 
6-month-old P30 1 L tau transgenic mice (4) and 
nontransgenic littermates (5-7). For the control 
peptide, we used the reversed sequence, AP,,-,, 
derived from the identical source (6). AP,, 
fibrils were generated by incubation at 37OC 
with s h a h g  and were confirmed by electron 
microscopy (Fig. 1, A and B) (5, 6). A@,, 
fibrils were stable in vivo in both P301L trans- 
genic and wild-type control mice and were 
readily detectable at least until 45 days after the 
injections (Fig. 1C). As expected, brain amy- 
loid deposits were accompanied by reactive 
astrogliosis at both the injection sites (Fig. ID) 
and the amygdala (Fig. 1E) (8);these were seen 
in both AP,,- and in control-injected transgenic 
mice and persisted for at least 45 days after 
injection. This reaction may be related to the 
fact that neurons in the amygdala project to the 
injection sites, as shown by retrograde transport 
of Texas red-onjugated dextran from the in- 
jection site in the somatosensory cortex to cell 
bodies in the amygdala (Fig. 1F) (8). 

Eighteen days after the injections of 
AP,,, Gallyas silver impregnation (9) re-
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vealed numerous NFTs (Fig. 2, A to E), along 
with neuropil threads and degenerating neurites 
(Fig. 2C) in the amygdala of P301L, but not 
wild-type, mice. Occasional NFTs were also 
present in the parietal cortex (Fig. 2D). The 
NFTs in mice (Fig. 2E) were very similar to 
those in  AD brains stained in  parallel by the 
same protocol (Fig. 2F). Moreover, the neuropil 
threads were similar to those known in  AD 
(10-12). A subset o f  Gallyas-positive NFTs in 

the mice was also stained with thioflavin-S, 
consistent with the histopathology of AD (Fig. 
2G). Irnrnunoelectmn microscopy identified 
many AT8-positive tau filaments in somatoden- 
dritic localizations o f  neurons within the baso- 
lateral amygdala o f  AP,,-injected P301L mice 
(13) (Fig. 2, H to J). The filaments had a width 
o f  20 to 25 nm and a periodicity of 90 nm and 
are best described as twisted ribbons. I n  human 
carriers, the P301L mutation causes predomi- 

nant expression o f  four repeat (4R) isoforms, 
with a small amount o f  wild-type 3R isoforms, 
resulting in 15-nm-wide twisted filaments with 
a periodicity of greater than 130 nm (14). Be- 
cause mice endogenously express only 4R tau 
isoforms, and the transgene was designed to 
express 4R human P301L tau, the filaments 
observed here contained no 3R tau. Important- 
ly, the human intronic FTDP-17 mutations that 
reduce the formation o f  3R tau also cause twist- 

tions of NFTs in the amygdala of AD,,- (A) and AP,- -injected (B) 
P301L tau transgenic mice. AP,, fibrils induced the ~all~as-positive 
formation of numerous NFTs and neuropil threads in the amygdala 
and, occasionally, the cortex as early as 18 days after the injection (C 
to E). NFTs in mice were very similar to  those found in brains obtained 
from AD atients; these slides were stained in parallel by the same 
protocol A). A subset of NFTs was also stained by thioflavin-S (G). 
lmmunoelectron microscopy revealed the presence of many twisted 
AT8-positive tau filaments in the basolateral area of the amygdala of 

AP,,-injected P301L mice (H to J). (A) Eight-month-old P301L male 
analyzed 40 days after injection; (B) 6.5-month-old P301L female 
analyzed 40 days after injection; [(C) and (D)] Six-month-old P301L 
female analyzed 18 days after injection; (E) 5.25-month-old P301L 
male analyzed 21 days after injection; (F) Human 86-year-old female 
AD patient; (G) Seven-month-old P301L female analyzed 45 days 
after injection. Bars: 25 pm [(A) to (C)], 12.5 pm [(D) to (G)], 800 pm 
(HI, 100 pm (I), 50 pm (I). 
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ed ribbons composed mainly of 4R tau. It is 
therefore possible that the relative amounts of 
3R and 4R isoforms contribute to the ultrastruc- 
turd morphology of the filaments. 

Quantitative analyses revealed five times 
more Gallyas-positive NFTs in the AP,,-inject- 
ed P301L mice than in A@,,,- or uninjected 
P301L mice (Fig. 2, A and B, and Fig. 3). 
Cross-sectional timecourse analyses of NFT 
formation showed initial NFTs 18 days after 
AP,, injection, with further increases in num- 
bers (n = 58) at least until 60 days after the 
injection. NFT formation in both hemispheres 
in the AP,,-injected P301L mice did not vary 
with gender (females: 23 + 21; males: 23 + 4; 
n = 7, P = 0.86, Mann-Whitney U test). In 
contrast, AP,,-,-injected P301L males devel- 
oped few NFTs and P301L females, no NFTs, 
at 6 to 8.5 months of age. This difference was 
statistically significant (females: 0; males: 
5.8 ? 1.9; n = 7, P C 0.01, Mann-Whitney U 
test). Importantly, the presence of the tau mu- 
tation was necessary for NFT formation be- 

cause homozygous transgenic mice expressing 
human wild-type tau at tau levels similar to or 
exceeding those of P301L mice (2) failed to 
develop NFTs in response to AP,, either at 6 or 
12 months of age. 

An unexpected finding was the spatial sep- 
aration of the site of AP,, injection and remote 
NFT formation in the amygdala, with no sig- 
nificant differences between the ipsilateral and 
the contralateral amygdala (1 1.4 + 10.13 and 
9.4 2 8.0; n = 7, P = 0.058, Wilcoxon Signed 
Ranks Test). This fmding suggests the possibil- 
ity that damage to presynaptic terminals or 
axons of neurons that project to the injection 
site caused NFT formation in the respective cell 
bodies. The anatomical separation of amyloid 
deposition and NFT formation is therefore con- 
sistent with AP,,-induced axonal damage and, 
possibly, impaired axonal transport of tau (IS). 
We confumed that the affected neuronal popu- 
lation in the amygdala projected to the cortical 
injection sites by showing retrograde transport 
of Texas red-conjugated dextran from the in- 

jection sites to the amygdala (Fig. IF). Other 
mechanisms of somatodendritic accumulation 
of tau are less likely: First, we excluded a direct 
exposure to AP,, fibrils of the cell bodies in the 
amygdala by immunohistochernistry, Second, 
increases in synthesis of tau protein are unlike- 
ly, as indicated by the absence of axonal dila- 
tations or spheroids in amygdala neurons. 
Third, a diffusible toxic factor would hardly 
explain the failure of neurons adjacent to the 
injection sites to develop NFTs. Moreover, se- 
lective vulnerability of the amygdala for NFT 
formation is suggested by doubly transgenic 
mice expressing both mutant APP and P30 1 L 
tau (16). In human patients with AD, an ana- 
tomical separation of amyloid plaques and 
NFTs is frequently found, with amyloid depos- 
its around synapses and NFTs in the respective 
cell bodies of projection neurons (1 7). In addi- 
tion, the arnygdala is among the most vulnera- 
ble areas affected early by NFT formation in 
human patients (18). High vulnerability of the 
amygdala in our P301L mice is supported by 

wt wt P301L P301L BOIL wt-tau 
ABu unlnj. ABu AD,, ABu 

Age(months) 6.3f 0.3 6.3f 0.3 7 6 A f  1.2 7.1 f 0.7 9.2f2.6 

Number of mice 3 3 2 7 7 4 

Fig. 3 (Left). Callyas-positive NFTs in the amygdala. NFTs were counted 
on day 22 after injection in AP,,-, AP,,-,-, and uninjected P301L trans- 
genic mice, nontransgenic littermate controls, and transgenic mice ex- 
pressing wild-type human tau (37). The mean age (months + SD) at the 
time of analyses is indicated. Callyas-positive NFTs were counted accord- 
ing to (8) and represent the sum in 20 standardized frontal sections 
comprising both the ipsilateral and the contralateral amygdala. Mann- 
Whitney U test: P = 0.007 (two-tailed exact significance) comparing 
AP,- with AP,,-,-injected P301L mice. Fig. 4 (right). Abnormal 
phospho-epitopes of tau induced by AP,, fibrils. The R145d epitope 5422 
was not phosphorylated in the hippocampus and cortex (A), but was 
specifically induced by AP,, fibrils in the amygdala [(B); higher magnifi- 
cation: (C)]. Double immunofluorescence staining with R145d (tau phos- 
pho-epitope 5422) and AT100 ( phospho-epitope 5212K214) revealed 
that R145d-positive neurons in the amygdala were AT100-positive [(D) 
and (E); merge: (F)]. About half of the R145d-positive neurons (C and I) 
bore Callyas-positive NFTs (H and J), and generally these included the 
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the fact that neurons in the amygdala expressed 
similar levels of the transgene as compared with 
cortical or hlppocampal pyramidal neurons, yet 
these developed hardly any NFTs (2). 

Although our experiments did not formal- 
ly address the involvement of astrocytes and 
microglia in NFT formation, activation of 
these cells alone was not sufficient for NFT 
formation because AP,, and AP4,-, similarly 
activated astrocytes and microglial cells, both 
around the injection sites and in the amygdala 
(Fig. 1, D and E) (19). 

The formation of NFTs in AD is associ- 
ated with hyperphosphorylation and confor- 
mational changes of tau (20-22). To deter- 
mine whether the AP,,-induced NFT forma- 
tion in P301L mice was associated with al- 
tered phosphorylation and conformation of 
tau, we used antibodies directed against ab- 
normal phospho-epitopes (R145d, pS4,,, 
AT100, TG3) (23-25), hyperphosphorylated 
epitopes (AT8, S199P, ATl80, 12E8, AD2, 
PHFI) (23, 26-31), as well as conformation- 
dependent antibodies (TG3, MCl) (22, 24), 
using standard procedures (8, 32). 

Whereas several antibodies, including 
AT8, detected phosphorylated tau throughout 
the brains of P301L mice independently of 
the injections, R 1 4 5 d i ~ S ~ ~ ~  and ATlOO di- 
rected against phospho-epitopes S422 and 
S2121T214, respectively, specifically detect- 
ed NFTs and neurons only in response to 
AP,, (Fig. 4, A to F). The spatial distribution 
pattern of these abnormally phosphorylated 
forms of tau was identical to that observed by 
Gallyas stainings and occurred, again, pre- 
dominantly in the amygdala (Fig. 4, A to C). 
Costaining revealed that neurons stained by 
R 1 4 5 d / ~ S ~ ~ ,  also by ATlOO were stained 
(Fig. 4, D to F). Neither R145d nor ATlOO 
immunostained any cells in nontransgenic 
mice. The specificity of R145d, pS422, and 
ATlOO irnrnunoreactivity for A@,,-associat- 
ed abnormal phosphorylation was exception- 
al because these antisera revealed few signals 
in uninjected or AP4,-,-injected P301L tau 
transgenic mice, and none in transgenic mice 
expressing wild-type human tau (19). More- 
over, all Gallyas-positive NFTs were also 
stained by R145d, as indicated by sequential 
irnmunofluorescence and Gallvas silver im- 
pregnation protocols, strongly suggesting that 
the NFTs in P301L mice contained S422-
phosphorylated tau. Semiquantitative analy- 
ses revealed that about one-half of the 
R145d-positive neurons (Fig. 4, G and I) 
were Gallyas-positive (Fig. 4, H and J), and 
R145d stained these neurons generally more 
intensely than cells without NFTs. 

Together, the result obtained with im- 
munostaining is consistent with the possi- 
bility that phosphorylation of epitopes Ser- 
212lThr-214 and Ser-422 is tightly associ- 
ated with NFT formation. Our data extend 
previous findings that AP,, induced tau 

phosphorylation in vitro and in vivo at the 
AT8 and 12E8lAb31 epitopes (33, 34): In 
our P301L mice, tau was phosphorylated at 
these epitopes, even in the absence of in- 
jected A@,,. Therefore, these epitopes may 
be necessary but were not sufficient for 
NFT formation in P301L mice. By using 
R145dlpS422 and AT100. we found that 
AP,, injections were followed by phospho- 
rylation of tau at S212lT214 and S422, 
suggesting a role of these epitopes in NFT 
formation. 

In summary, our data establish that A@,, 
fibrils can significantly accelerate NFT for- 
mation in P301L mice and provide further 
support for the hypothesis that P-amyloid can 
be a causative pathogenic factor. Our data do 
not exclude the possibility that other factors 
can also induce NFT formation in brain, in 
view of the many tauopathies associated with 
NFT formation in the absence of P-amyloid 
plaques (3, 35). Our data show that, in trans- 
genic mice, the interaction of 6-amyloid with 
the P301L mutation was required for NFT 
formation-neither P-amyloid nor the muta- 
tion alone was sufficient to generate high 
numbers of NFTs. Moreover, the mice gen- 
erated here provide an in vivo assay to deter- 
mine whether amyloid-lowering therapies 
such as AP vaccination are effective in pre- 
venting NFT formation in vivo. 
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Activation by lKKa of a Second, 

Evolutionary Conserved, NF-KB 


Signaling Pathway 

Uwe Senftleben,',2 Yixue Cao,' Cutian XiaoP3 Florian R. Creten,' 

Certraud Krahn,'s4 Ciuseppina Bonizzi,' Yi Chen,' Yinling Hu,' 
Abraham F ~ n g , ~  Shao-Cong Sunn3 Michael Karin1* 

In mammals, the canonical nuclear factor K B  (NF-KB)signaling pathway acti- 
vated in  response t o  infections is based on degradation of IKB inhibitors. This 
pathway depends on the IKB kinase (IKK),which contains two  catalytic subunits, 
I K K a  and IKKP. I K K P  is essential for inducible IKB phosphorylation and degra- 
dation, whereas I K K a  is not. Here we show that l K K a  is required for B cell 
maturation, formation of secondary lymphoid organs, increased expression of 
certain NF-KB target genes, and processing of the NF-KBZ (p100) precursor. 
I K K a  preferentially phosphorylates NF-KBZ,and this activity requires its phos- 
phorylation by upstream kinases, one of which may be NF-KB-inducing kinase 
(NIK). I K K a  is therefore a pivotal component of a second NF-KB activation 
pathway based on regulated NF-KBZ processing rather than IKB degradation. 

Mammals express five NF-KB transcription phorylate and activate IKKa (13), one of the 
factors: RelA, RelB, c-Rel, NF-KB~,  and NF- two catalytic subunits of the IKK complex (2). 
K B ~(1). Unlike the Re1 proteins, N F - K B ~  and The other catalytic subunit, IKKP, is 52% iden- 
N F - K B ~are synthesized as large precursors tical to IKKa (2), and in vitro both subunits 
(p105 and p100, respectively) that require pro- exhlbit IKB kinase activity (14). Despite these 
teolytic processing to produce their respective similarities, IKKa and IKKP have distinct 
p50 and p52 NF-KB subunits (1). Mature NF- functions (2, 5). IKKP is essential for proper 
KB dimers are kept in the cytoplasm through activation of NF-KB in response to proinflam- 
interaction with inhibitory IKB proteins, and the matory stimuli and for prevention of tumor 
major pathway leading to their activation is necrosis factor (TNF-a)-induced apoptosis 
based on inducible IKB degradation (1, 2). This (15-la), whereas IKKa is dispensable for IKK 
canonical pathway, triggered by proinflamma- activation and induction of NF-KB DNA bind- 
tory cytokines, microbes, and viruses, requires ing activity in most cell types (1 7, 19). IKKa, 
activation of the IKK complex (2). Because the but not IKKP, is essential for proper skeletal 
NF-KB~and N F - K B ~  precursors contain IKB- morphogenesis and differentiation of the epi- 
llke ankynn repeats in their COOH-termini, dermis (19, 20). However, this function does 
they can function as IKBS (3, 4). Unlike IKB not depend on IKK activity or NF-KB activa- 
degradation, processing of NF-KB 1 is a consti- tion (21). These findings raise the question of 
tutive process (5, 6 ) .N F - K B ~processing, how- whether IKKa has any NF-KB-related func- 
ever, could be a regulated process because it is tions that are masked by the perinatal lethality 
most active in mature B cell lines (7) and is of Ikka' mice. Here, we provide evidence that 
defective in sly mice (8). The aly mutation, IKKa kinase activity is required for B cell 
which maps to the gene encoding NIK, inter- maturation, formation of secondary lymphoid 
feres with the development of primary and sec- organs, induction of a subset of NF-KB target 
ondary lymphoid organs (9 ) ,as does a complete genes, and inducible N F - K B ~  processing. This 
NIK deficiency (10). Interestingly, NIK induces function of IKKa is strikingly similar to that of 
ubiquitin-dependent processing of N F - K B ~  (1 1)  Drosophila IKK, which is required for process- 
but is not required for induction of NF-KB ing of Relish, a NF-KB~-like precursor protein 
DNA binding activity (12). (22, 23). In addition to explaining the function 

NIK was discovered as an NF-KB-activat- of IKKa, these results shed new light on the 
ing b a s e  (12) and was later shown to phos- mechanisms involved in the evolution of innate 

and adaptive immunity. 
Analysis of bone marrow cells from wild- 

'Laboratory of Gene Regulation and Signal Transduc- 
tion, Department of Pharmacology, University of Gal. type, Ikka--, and IkkP-' radiation chimeras 
ifornia, San Diego, 9500 Gilman Drive, La Jolla, CA (24) revealed complete absence of B cells in 
92093, USA. ?clinic for Anesthesiology, University of Ikkp-'=derived samples (25). By contrast, B 
Ulm, Steinhovelstrasse 9, 89075 Ulm, Germany. 3De- cellS were present in 1kka-' 
partment of Microbiology and Immunology, Pennsyl- 
vania State University College o f  Medicine, Hershey, bone (25)' these ex-
PA 17033, USA. 4Department o f  Dermatology, Uni- pressed n ~ r m a l  levels of early B cell markers, 
versity of Ulm, Oberer Eselsberg 40, 89081 Ulm, a B220h'CD24'0 population, representing cir-
Germany. culating mature B cells, was absent (25). No 
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