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jNPL3 transgenic mice expressing a mutant tau protein, which develop neu- 
rofibrillary tangles and progressive motor disturbance, were crossed with 
Tg2576 transgenic mice expressing mutant 6-amyloid precursor protein (APP), 
thus modulating the APP-AP (P-amyloid peptide) environment. The resulting 
double mutant (tau/APP) progeny and the Tg2576 parental strain developed AP 
deposits a t  the same age; however, relative t o  JNPL3 mice, the double mutants 
exhibited neurofibrillary tangle pathology that was substantially enhanced in 
the limbic system and olfactory cortex. These results indicate that either APP 
or AP influences the formation of neurofibrillary tangles. The interaction be- 
tween AP and tau pathologies in these mice supports the hypothesis that a 
similar interaction occurs in  Alzheimer's disease. 

Alzheimer's disease (AD) is pathologically 
characterized by senile plaques, largely com- 
posed of extracellular deposits of A6 peptide, 
and neurofibrillary tangles (NFTs), com-
posed of intracellular filamentous aggregates 
of hyperphosphorylated tau protein. Since the 
initial molecular characterizations of these 
lesions (1-3), there has been controversy 
over how these lesions and their constituent 
molecules are pathogenically related to each 
other and to the neuronal and synaptic losses 
that characterize the disease (4-6). A key 
part of this debate has been the observation 
that the pathogenic mutations that underlie 
the autosomal dominant forms of the dis- 
ease-mutations in APP or in the presenilins 
PS-1 and PS-2 (7-9)-lead to increased pro- 
duction of the A642 peptide in tissues from 
affected individuals (lo), in transfected cells 
(11-13), and in transgenic animals (12, 14- 
18). Some transgenic mouse models for AD, 
overexpressing mutant human APP alone or 
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with mutant PS-1, develop senile plaques; 
however, these mice lack NFTs and exhibit 
little neuronal loss (14-18). This has limited 
their use as models of disease and fueled the 
notion that senile plaques and NFTs are gen- 
erated by independent processes. 

Neurofibrillary pathology is also a feature 
of other neurodegenerative diseases, includ- 
ing FTDP-17 (frontotemporal dementia and 
Parkinsonism linked to chromosome 17). 
Mutations in the tau gene underlie FTDP-17, 
hence tau dysfunction is sufficient to cause 
neurodegeneration (1 9). Furthermore, JNPL3 
transgenic mice with the Pro3'' + Leu 
(P301L) tau mutation develop NFTs in the 
basal telencephalon, diencephalon, brain-
stem, and spinal cord, along with neuronal 
loss that is most evident in the spinal cord, 
especially in the anterior horn (20). 

The production of these mutant tau trans- 
genic mice provided the opportunity to test 
experimentally whether the distribution or 
timing of neurofibrillary pathology is influ- 
enced by the pathogenic mutations that cause 
AD. Therefore, we crossed Tg2576 trans-
genic mice expressing the APPsw mutation 
( L ~ S ~ ~ '+Asn, Met67' -.Leu) (15, 21, 22) 
with JNPL3 transgenic mice expressing mu- 
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tant P301L four-repeat tau (20) and compared 
the pathology of the crossed mice with each 
of their parental lines (23). 

Previous studies have shown that Tg2576 
mice have markedly elevated AP levels at an 
early age and develop extracellular AP de-
posits in the cortex and hippocampus by 9 to 
12 months of age (15). Hemizygous JNPL3 
mice develop progressive motor and behav- 
ioral abnormalities with robust neurofibril- 
lary pathology and neuronal loss in the spinal 
cord as early as 6.5 months (20). In JNPL3 
animals, NFTs are primarily located in the 
spinal cord and the hindbrain, with fewer 
NFTs in the midbrain, amygdala, and hypo- 
thalamus (20). Pretangles, which are neurons 
that have abnormal expression of phospho- 
tau epitopes, are found in greater numbers 
and have a wider distribution throughout the 
spinal cord and brain, most notably in limbic 
structures such as the hippocampus and 
amygdala. Neither pretangles nor NFTs are 
detected in the basal ganglia of JNPL3 mice. 

We examined the brains and spinal cords 
of Tg2576 X JNPL3 progeny at 2.5 to 3.5 
months, 6 to 7 months, and 8.5 to 15 months 
of age (24-29). These progeny included dou- 
ble mutant tau (P301L)-mutant APP 
(APPsw) (hereafter termed TAPP mice), mu- 
tant tau (JNPL3), mutant APP (Tg2576), and 
nontransgenic animals. TAPP mice had amy- 
loid plaques similar in number and distribu- 
tion to those of comparably aged Tg2576 
mice. Plaques were detected as early as 6 
months of age but became numerous only in 
older TAPP and Tg2576 mice (8.5 to 15 
months) in the olfactory cortex, cingulate 
gyms, amygdala, entorhinal cortex, and hip- 
pocampus (Fig. 1) (30). NFTs were morpho- 
logically similar in TAPP and JNPL3 mice 
and appeared in the spinal cord and pons as 
early as 3 months of age, but were consis- 
tently present and numerous only in older 
animals (Figs. 2 and 3). Some of the NFTs 
were fluorescent when stained with thiofla- 
vin-S, and all were intensely positive for 
Gallyas silver stain and immunoreactive with 
a panel of antibodies to tau protein, including 
antibodies to phosphorylation-dependent and 
conformational epitopes (24-28) (Fig. 1). Ul- 
trastructurally, NFTs in the TAPP mice were 
also similar to those in JNPL3 mice and were 
composed of straight filaments, 17 to 22 nm 
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in diameter. that sometimes formed complex 
arrangements with a herringbone appearance 
similar to those described in Pick's disease 
(Fig. 1) (31). Tau filaments occupied a large 
proportion of the cell volume in neurons with 
NFTs, displacing the nucleus and cytoplas- 
mic organelles and compressing the Golgi 
apparatus. 

Although NFTs were morphologically 
similar in the TAPP and JNPL3 (mutant tau) 
mice, older female TAPP mice (9 to 11 
months) had a marked increase in NFTs in 
limbic areas, most notably the olfactory cor- 
tex, entorhinal cortex, and amygdala. This 
enhanced neurofibrillary degeneration oc- 
curred as early as 6 months of age. The 
density of NFTs in these regions in female 
TAPP mice (9 to 1 1 months) was greater than 
in female JNPL3 littermates by a factor of 
more than 7 (P < 0.01 2 to P < 0.0009) (Figs. 
2 and 3). NFTs were also detected in the 
subiculum, hippocampus, and occasionally 
isocortex in the TAPP animals, areas that 
rarely or never had NFTs in JNPL3 mice. The 
number and distribution of pretangles was 
also increased in female TAPP mice (9 to 11 
months) in limbic areas and cerebral cortex. 
In contrast, subcortical neurofibrillary pathol- 
ogy was similar in female TAPP and JNPL3 
mice, with no increase in density of either 
NFTs or pretangles in the diencephalon, 
hindbrain, or spinal cord (Fig. 3). NFTs and 
pretangles were not observed in the basal 
ganglia in TAPP mice. In limbic areas with 
the most NFTs, there was a concomitant in- 
crease in astrocytosis (Fig. 2) in TAPP mice. 
In contrast, in the ventral diencephalon, hind- 
brain, and spinal cord of JNPL3 and TAPP 
mice, gliosis was equally severe. Enhanced 
neurofibrillary pathology in female TAPP 
mice (9 to 11 months) in limbic regions is of 
interest because these are the areas in which 
AP pathology first develops in Tg2576 mice 
(15). 

However. even in areas vulnerable to both 
types of lesions (such as the entorhinal cor- 
tex), NFTs were not typically increased in the 
immediate vicinity of amyloid deposits. The 
fact that amyloid plaques were not generally 
surrounded by tangle-bearing neurons sug- 
gests that either a high-AP environment or 
APP dysfunction, but not necessarily the for- 
mation of mature amyloid deposits, is respon- 
sible for the modulation and enhancement of 
the tau phenotype in the TAPP mice. Inter- 
estingly, male TAPP mice did not develop 
similar enhanced NFT pathology in limbic 
regions (Fig. 3). This likely reflects sex dif- 
ferences in the development of NFT pathol- 
ogy previously observed in the JNPL3 line; 
female mice develop NFT pathology signifi- 
cantly earlier than do males (32). However, 
the difference between female and male 
TAPP mice could also be caused by signifi- 
cant sex differences in amyloid burden pre- 
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viously noted in older Tg2576 mice (33) or 
could reflect hormonal changes in aging fe- 
male TAPP mice. The latter possibility is 
interesting given the higher incidence of AD 
in women (34-36). 

The morphology, distribution, and density 
of the amyloid plaques were similar in TAPP 
mice and age-matched Tg2576 mice (Fig. 1)  
(30). The amyloid deposits were immunore- 
active for both Afi40 and AP42 (30). In 
addition, dystrophic neurites immunoreactive 
for APP were associated with the senile 
plaques in both TAPP and Tg2576 mice (30). 
Some of the plaques had neurites that were 
immunoreactive with phospho-tau antibod- 
ies, but plaque-associated neurites were not 

detected with antibodies specific to confor- 
mational tau epitopes, such as Alz50 and 
MCI, or antibodies specific to NFTs, such as 
Ab39 (Fig. 1) (30). To date, we have not 
identified plaque-associated dystrophic neu- 
rites containing tau-immunoreactive filamen- 
tous structures at the ultrastructural level. 

Brain AP 1-40 and AP 1-42 were measured 
in hemibrains from 9- to 1 1 -month-old TAPP 
mice and from Tg2576 littermates (15, 37- 
39). AP40 and AP42 levels were similar in 
the brains of TAPP mice (553 pmollg and 
352 pmollg, respectively) and Tg2576 litter- 
mates (560 pmollg and 421 pmollg, respec- 
tively), consistent with the absence of a de- 
tectable difference in Afi plaque burden in 

Fig. 1. NFTs and arnyloid plaques in TAPP mice. (A and C) Adjacent sections of entorhinal cortex 
viewed with thioflavin-S fluorescent microscopy (A) or Callyas silver stain (C) show both amyloid 
plaques and NFTs in female TAPP mice. (Band D) Amyloid plaques are imrnunostained with a rabbit 
antibody to AP42 and double-immunostained with mouse antibodies to tau. In (B), a tangle- 
specific mAb (Ab39) identifies a NFT (left) but no neurites in the plaque. In (D), double staining of 
a diffuse arnyloid deposit in the frontal cortex shows local phospho-tau (PCS) immunoreactivity in 
neurons and neuronal cell processes associated with the plaque. (E) Ultrastructural studies of 
entorhinal NFTs reveal aggregates of criss-crossing straight filaments that are about 20 nm in 
diameter. (F) Granulovacuolar bodies (arrowheads) are detected in neurons in the amygdala, 
entorhinal cortex, and subiculum with phospho-tau antibodies (TC3). Mice were aged 9.5 to 10.5 
months. Magnifications: (A) and (C), ZOOX; (B), (D), and (F), 400X. 
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the TAPP mice compared with Tg2576 mice 
at the same age. A larger series of animals, 
however, will be needed to determine wheth- 
er there are significant differences in the ini- 
tial levels of A$ in young TAPP mice and in 
the rate of A$ deposition as the mice age. 

Levels of total soluble endogenous and 
transgenic tau protein (40) and tau mRNA 
(41) were similar in TAPP and JNPL3 brains 
(30). In addition, in situ hybridization analy- 
sis showed no difference in tau transgene 
expression pattern between TAPP and JNPL3 
mice. These data indicate that there was no 
global or region-specific increase in tau ex- 
pression that could explain the enhanced neu- 
rofibrillary pathology in the TAPP mice. 

Sarkosyl-insoluble tau extracted from 
both TAPP and JNPL3 mice contained a 
major hyperphosphorylated species migrating 
at 64 kD (Fig. 3) that increased as a propor- 

tion ofthe total insoluble tau with age. Dephos- 
phorylation studies in JNPL3 mice and in 
humans with AD and FTDP-17 have shown 
that the 64-kD band contains hyperphospho- 
rylated tau of the same isoform expressed by 
the tau transgene (20). The 64-kD insoluble 
tau species (42.43) extracted from the cortex1 
limbic fraction (fraction 1) of the mouse brain 
was increased in female TAPP mice (9.5 to 
11 months) relative to female JNPL3 mice, 
but not in the fraction (fraction 2) containing 
the subcortical regions, brainstem, and cere- 
bellum (Fig. 3). This elevation of 64-kD in- 
soluble tau in the female TAPP animals (9.5 
to 11 months) correlates with histopathologic 
evidence of enhanced neurofibrillary pathol- 
ogy in the limbic system of the oldest female 
TAPP mice. At earlier time points (3 and 6 
months), insoluble tau could be detected in 
both fractions in TAPP and JNPL3 mice; 

Fig. 2. Enhanced limbic neurofibrillary pathology in TAPP mice. Callyas silver-stained preparations 
show enhanced neurofibrillary degeneration in the amygdala and adjacent entorhinal cortex of 
female TAPP mice (A and C) relative to  age-matched JNPL3 mice (B and D); boxes in (A) and (B) 
correspond to regions in (C) and (D), respectively. Note the pyknosis of non-tangle-bearing neurons 
in (C). lmmunostaining for CFAP also reveals gliosis in female TAPP mice (E) that is minimal in 
female JNPL3 mice (F). Sections are from 9-month-old mice. Magnifications: (A) and (B), 40X; (C) 
and (D), 400X; (E) and (F). 2OOX. 

however, enhanced insoluble tau in the cor- 
textlimbic fraction was not observed in 
TAPP mice. This correlates with the obser- 
vation that significant increases in limbic 
NFT pathology are detected only after 9 
months in female TAPP mice (Fig. 3). 

In addition to increased NFTs, granulo- 
vacuolar degeneration was observed in neu- 
rons in the amygdala, entorhinal cortex, and 
subiculum in female TAPP mice (Fig. 1). 
Granulovacuolar degeneration was character- 
ized by optically clear vacuoles with dense 
cores that contained phosphorylated epitopes 
recognized by TG3 and MPM-2 monoclonal 
antibodies (mAbs) (44, 45). In contrast, only 
neurons in the amygdala of JNPL3 mice 
showed rare granulovacuolar degeneration. 

TAPP mice developed motor disturbances 
similar to their JNPL3 littermates, with iden- 
tical range in age of onset, including progres- 
sive hindlimb weakness, hunched posture, 
eye irritations, reduced vocalization, and de- 
creased grooming (20). The motor phenotype 
is most likely associated with the spinal cord 
and neuromuscular pathology that was simi- 
lar in both TAPP and JNPL3 mice. 

Our results reveal an interaction between 
APP or AP and tau (46) that leads :o in- 
creased NFT formation and distribution in 
regions of brain vulnerable to these lesions. 
Most important, the findings for TAPP mice 
show that improved rodent models of AD are 
possible using an APP-tau cross-breeding 
strategy. These models should allow thera- 
pies to be developed and tested that address 
not only amyloid deposition but also NFT 
formation and neuronal loss, features of AD 
that transgenic mice have failed to 
recapitulate. 

Note added in prooJ Gotz et al. (47) 
injected AP42 fibrils into the brains of P301L 
mutant tau transgenic mice and noted a factor 
of 5 increase in the numbers of NFTs in the 
amygdala from where neurons project to the 
injection sites. These data are consistent with 
our own observations in TAPP mice and 
further support the hypothesis that there is an 
interaction between the AP and tau patholo- 
gies in AD. 
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Formation of Neurofibrillary 

Tangles in P301L Tau 


Transgenic Mice Induced by 

AP42 Fibrils 


J. Cotz,'*t F. Chen,'* J. van Dorpe,' R. M. ~ i tsch ' t  

P-Amyloid plaques and neurofibrillary tangles (NFTs) are the defining neuro- 
pathological hallmarks of Alzheimer's disease, but their pathophysiological 
relation is unclear. Injection of 0-amyloid AP,, fibrils into the brains of P301L 
mutant tau transgenic mice caused fivefold increases i n  the numbers of NFTs 
in  cell bodies within the amygdala from where neurons project t o  the injection 
sites. Gallyas silver impregnation identified NFTs that contained tau phospho- 
rylated at  serine 212Ithreonine 214 and serine 422. NFTs were composed of 
twisted filaments and occurred i n  6-month-old mice as early as 18 days after 
A@,, injections. Our data support the hypothesis that AP,, fibrils can accelerate 
NFT formation in  vivo. 

Transgenic mice that express P301L mutant 
human tau form abnormal tau-containing fila- 
ments in brains (1, 2). These filaments have 
s t r i h g  similarities with the NFTs of several 
human neurodegenerative diseases, including 
Alzheimer's disease (AD) and frontotemporal 
dementia with parkinsonism linked to chromo- 
some 17 (FTDP-I?), but their numbers are 
considerably lower than these commonly found 
in human disease (3). To determine whether 
P-amyloid can accelerate NFT formation, we 
injected synthetic A@,, fibrils into the somato- 

'Division of Psychiatry Research, University of Zurich, 
August Forel Strasse 1. 8008 Zurich. Switzerland. 
ZExperimental Genetics Croup, Center for Human Ce- 
netics, K. U. Leuven, Campus Casthuisberg, Leuven, 
Belgium. 

*These authors contributed equally t o  this work. 
tTo  whom correspondence should be addressed at 
the Division of Psychiatry Research, University of 
Zurich, August Forel Strasse 1, 8008 Zurich, Switzer- 
land. E-mail: goetz@bli.unizh.ch 
:To whom correspondence should be addressed at 
the Division of Psychiatry Research, University of 
Ziirich, August Forel Strasse 1, 8008 Zurich, Switzer- 
land. E-mail: nitsch@bli.unizh.ch 

sensory cortex and the hppocampus of 5- to 
6-month-old P30 1 L tau transgenic mice (4) and 
nontransgenic littermates (5-7). For the control 
peptide, we used the reversed sequence, AP,,-,, 
derived from the identical source (6). AP,, 
fibrils were generated by incubation at 37OC 
with s h a h g  and were confirmed by electron 
microscopy (Fig. 1, A and B) (5, 6). A@,, 
fibrils were stable in vivo in both P301L trans- 
genic and wild-type control mice and were 
readily detectable at least until 45 days after the 
injections (Fig. 1C). As expected, brain amy- 
loid deposits were accompanied by reactive 
astrogliosis at both the injection sites (Fig. ID) 
and the amygdala (Fig. 1E) (8);these were seen 
in both AP,,- and in control-injected transgenic 
mice and persisted for at least 45 days after 
injection. This reaction may be related to the 
fact that neurons in the amygdala project to the 
injection sites, as shown by retrograde transport 
of Texas red-onjugated dextran from the in- 
jection site in the somatosensory cortex to cell 
bodies in the amygdala (Fig. 1F) (8). 

Eighteen days after the injections of 
AP,,, Gallyas silver impregnation (9) re-
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