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The low 0, content of the Archean atmosphere implies that methane should 
have been present at levels -10, to lo3 parts per million volume (ppmv) 
(compared with 1.7 ppmv today) given a plausible biogenic source. CH, is 
favored as the greenhouse gas that countered the lower luminosity of the early 
Sun. But abundant CH, implies that hydrogen escapes to space ( T space) orders 
of magnitude faster than today. Such reductant loss oxidizes the Earth. Pho- 
tosynthesis splits water into 0, and H, and methanogenesis transfers the H into 
CH,. Hydrogen escape after CH, photolysis, therefore, causes a net gain of 
oxygen [CO, + 2H20 +CH, + 20,  +CO, + 0, + 4H( T space)]. Expected 
irreversible oxidation (-1012 to IOl3 moles oxygen per year) may help explain 
how Earth's surface environment became irreversibly oxidized. 

The rise of atmospheric 0, about 2.4 to 2.2 oxygenate the environment permanently. 
billion years ago (Ga) (1: 2) changed the However, no consensus theory has yet 
course of biological evolution. Yet explain- emerged to explain why 0, rose long after 
ing why 0, rose at that time has remained oxygenic photosynthesis evolved (9,and all 
elusive, given that bacterial oxygenic photo- current hypotheses are problematic (8). 
synthesis was present hundreds of millions of We describe an overlooked biogeochemi- 
years earlier, before 2.7 Ga (3) and possibly cal mechanism relevant to Earth's redox his- 
since 3.8 to 3.5 Ga (2, 4, 5). Oxygenic pho- tory: the coupling of early oxygenic photo- 
tosynthesis splits water into 0, and a reduc- synthesis to the escape of H to space. H 
tant, H. Hydrogen is used to reduce CO, for escape provides an alternative to organic 
biosynthesis of organic matter. Nearly all burial for removing photosynthetic reductant; 
photosynthesized organic matter (today, H escape is irreversible, whereas metamor- 
-99.9% of -9000 X 10" mol C yearp1) phism and continental erosion recycle the 
recombines with 0, via decay or respiration reducing power of buried organic matter. In 
(6, 7). Conventional thlnking has focused on the biosphere, H is transferred from photo- 
the burial of organic carbon as the means of synthetic organics to CH, by methanogen- 
separating photosynthetic reductant from O,, esis. When CH, is decomposed in the upper 
thereby enabling 0, to accumulate at the atmosphere by ultraviolet (UV) radiation, H 
surface. ow ever, t6e small flux of organic escapes to space forever. The overall chem- 
carbon that escapes oxidation through burial istry is CO, + 2H20 + CH, + 20, + 
in sediments [currently -1013 mol C yearp1 CO, + 0, + 4H(T space), where the first 
( 6 ) ]would only cause atmospheric 0, to rise reaction sums photosynthesis and methano- 
if the burial rate exceeded-the rate of 0, genesis. Currently, Earth gains oxygen by 
consumption by reductants supplied to the CH,-induced H escape at a negligible rate 
atmosphere and ocean by geologic processes. -10l0 mol 0, year-' because the rate de- 
Today, these rates appear balanced, with no pends on the magnitude of the atmospheric 
atmospheric 0, increase (6). Moreover, at- mixing ratio of CH, (f ), which today is 

CH4
mospheric 0, only increases if reductant that only 1.7 ppmv. 
is buried at a preferential rate relative to However, CH, would have been an im- 
oxidized material does not later return to the portant trace atmospheric constituent before 
atmosphere or ocean, canceling the 0, gains the rise of 0,. Today, the large biogenic flux 
(e.g., by reduced metamorphic gases or dis- of CH, to the atmosphere is oxidized, limit- 
solution of uplifted, reduced continental sed- ing fcH4 (9). But in the low-0, Archean, the 
iments). The early environment was suffi- kinetic fates of biogenic 0, and CH, would 
ciently reducing to scavenge 0, (2), so re- have been reversed. 0, would have been 
ductant had to be removed preferentially rel- rapidly consumed and CH,, long-lived. Rapid 
ative to oxidized species and irreversibly to reaction of 0, with reduced metamorphic and 

volcanic gases and with upwelling oceanic 
cations like Fe2+ would have buffered 0, to
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plus CO,, given that Archean elemental car- 
bon is found in biologically mediated fine- 
erained shales (fixed from CO,) rather than 
rn detrital form^ (11). An Archcan methano- 
gen biosphere is suggested by biochemistry 
(12) and carbon isotope evidence (13-15). 
Photochemical models suggest Archean fcH4 

-200 to 3000 ppmv (16-18) if the biogenic 
CH, production rate were 0.1 to 1 times that 
of the present. 

Abundant atmospheric CH, is also the most 
plausible explanation for Archean greenhouse 
warming (17). A large greenhouse effect is 
needed to explain the temperate Archean cli- 
mate when solar luminosity was 20 to 30% 
lower than today (19). A partial pressure of 
carbon dloxide (pCO,) a few hundred to 1000 
times larger than today has been postulated (20) 
but is improbable for several reasons. Paleosols 
indicate that pCO, was an order of magnitude 
too low to counter a fainter Sun at 2.75 Ga (21). 
The mineralogy of banded iron formations also 
suggests that pCO, < 0.15 bar at 3.5 Ga (22). 
Abundant Archean marine limestone indicates 
calcite supersaturation then, as now (7). If 
pCO, were high, oceanic Ca2+ should have 
been depleted, but evaporitic gypsum (23) sug- 
gests otherwise. Also, carbonatization of the 
seafloor should have lowered pCO, to levels 
inconsistent with a dominant greenhouse role 
(24). Further, Archean geochemical data do not 
indicate levels of acid weathering expected for 
pCO, > 100 times present (25). Consequently, 
the theory of Archean CH, greenhouse warm- 
ing (Fig. 1A) has become favored (15-18, 21, 
24). High CH, is consistent with relatively low 
pCO, because if a large greenhouse enhance- 
ment by CO, were added to warming dorninat- 
ed by CH,, CO, would be consumed in nega- 
tive feedback by temperature-dependent weath- 
ering of continental silicates. A CH,-mediated 
climate can be stabilized in negative feedback 
with 0,; e.g., increasing fcH4 causes green- 
house warming, which increases weathering, 
sedimentation, and, ultimately, organic burial 
rates. The latter, in turn, increases O,, which 
lowersfCH4 

Climatologically important CH, (Fig. 1A) 
induces rapid escape of H to space. H escapes 
from the base of Earth's exosphere (-300- to 
500-km altitude), where H atoms are the only 
H species (26, 27). Several processes rapidly 
depopulate H atoms from the exosphere so 
that diffusive supply of H from lower levels 
is the rate-limiting step (27). The total con- 
centration of all H-bearing compounds in the 
lower stratosphere, f,,,, (= fHZO + fH2 + 
2fCH4.. .) (expressed as H, molecules for 
these calculations) determines the diffusion- 
limited H escape rate, +,,,.,,, given by (27): 

-<-..F- -

+escape = 2.5 
lo'3 ftotal  (H2 molecules cm-2 s-') ( ) 

Today, is trivial (Table 1) because 
f,,,,, is small, given only 3 ppmv water vapor, 
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: - ppm\ C H, and 0 5 5  ppnn H, in the 
loaer stratosphere Upward transport of H 
111 H,O. In particula~. is limited by a "cold 
trap" at  the tropopause ahere  water con-
denses. Because such a cold trap is a gen- 
eral feature of paleoatmospheres, oxygen 
production by abiotic H escape from water 
Lapor can be neglected ( 7 )  Hoaeker. CH, 
1s not cold trapped and increased H escape 
I \  una\ oldable a ith increased f,,,,If Archean 
f, were - 1000 ppmk (16-18). 4 ,,c,,L 
\+auld be -300 times higher than today's 
t lul  (Table 1 ) Large CH,-mduced H escape 

3.6 	 3.2 2.8 2.4 
Time (Ga) 

Fig. 1. (A) The calculated mixing rat io o f  CH, 
(left ordinate axis) needed t o  maintain a sur- 
face temperature o f  290 K on early Earth 
against the lower luminosity o f  the young Sun. 
We used the radiative modeling o f  (77, 78). The 
mean global temperature in the Archean is 
assumed t o  be similar t o  tha t  o f  the present 
day, given the absence of extensive glaciation 
in the Archean and constraints f rom Archean 
evaporites (7, 23). CH4 mixing ratios are calcu- 
lated at three fixed levels o f  pCO, as indicated, 
where PAL indicates present atmospheric lev- 
e l  -- 0.0003 bar. The upper pCO, l imit,  pCO, = 
0.01 bar, is derived f rom paleosols for 2.2 t o  2.8 
Ca a t  290 K (27) and yields a lower l imi t  on  
CH,. The irreversible oxidation fluxes due t o  
escape o f  hydrogen, corresponding t o  particular 
levels o f  CH,, are expressed as molar 0, equiv-
alents per year (right ordinate axis). W e  end 
calculations at 2.4 t o  2.3 Ca, assuming that  
CH, levels co l la~sed  uDon the rise o f  atmo-
sph'*eric 0,. (B) 'lntegrAted oxidation due t o  
CH,-induced escape to space, usingthe three 
atmospheric CH4 from (A)zshown withlevels 
matching labels. Cumulative and the 
observed molar oxygen inventory in  the conti- 
nental crust (Table 2) are comparable. 

rates and significant global oxidation rates are 
general consequences of a high Archean &.,,, 
(-78). 

Escape of H to space oxidizes Earth as a 
whole. Oxidation is expressed in the geochemi- 
cal resenoir where the H originates, although 
the resultant oxidized species may subsequently 
be transported to other reservoirs. We explain 
how oxidation results from CH,-induced H es-
cape in three cases: (i) when CH, originates 
from organic matter produced by oxygenic pho- 
tosynthesis, (ii) when CH, derives from organic 
matter produced by anoxygenic autotrophic 
metabolisms, and (iii) when CH, derives from 
mantle H. 

In (i), oxygen is gained irreversibly be- 
cause photosynthetic splitting of water pro- 
duces 0, and H, and CH,-mediated escape 
removes the H forever. This process is sche- 
matically represented in Eqs. 2 through 5 .  
Oxygenic photosynthesis can be summarized 
as 

CO, + H1O = CH,O + 0, (2 

where CH,O represents organic matter. Pro- 
duction of CH, mainly derives from symbi- 
otic communities of heterotrophs and meth- 
anogens that decompose organic matter (13). 

2CH20 = CH, + CO, 13) 

H escape to space via CH, can be represented 
as follows, noting that the detailed photo- 
chemistry (16) IS rather more complex 

CH, + hv --, C + 4H(? space) (4a) 

C + 0, = CO? (4b) 
Thus. the comblned effect of the early bio- 
sphere, using the processes of oxygenic pho- 
tosynthesls (Eq 2). methanogenesls (Eq 
3), and H escape (Eq 4), IS described by the 
sequential sum of these processes [(2 X 

Eq 2) + Eq 3 + Eq 41 Thls gives the 

Table 1. Earth's oxygen fluxes. 

Type of flux 

Modern organic carbon burial flux* 
Modern pyrite burial f luxt 
Modern Fe3- subduction flux t o  the mantle: 
Modern continental oxidative weathering 

flux* 
Modern flux of reduced volcanic and 

metamorphic gases* 
Modern net photosynthetic flux t o  the 

atmosphere (assuming the burial fluxes 
and oxidative losses are balanced by 
negative feedbacks)* 

Modern gain from H escape to spaces 
Archean gain from H escape t o  space, with 

100 t01000 DDmV CH.6 
8 8 	 .,, 

overall chemical transformation of the 

crustal system: 


2H,O + "the biosphere" 


+ hv +O2 + 4H(T space) ( 5 ) 

Consequently. the irreversible gain of oxygen 
from CH,-induced H escape derives from 
water split by oxygenic photosynthesis. A 
more circuitous route to oxygen gain occurs 
when buried organic matter devolatilizes by 
diagenesis or metamorphism to produce H, 
(e.g., via CH,O + H,O = 2H, + CO,) or 
CH, (via 2CH,O = CH, + CO,). During the 
Archean, if methanogens produced CH, by 
consuming metamorphic H,, or if CH, or H, 
fluxed directly from decomposed buried or- 
ganic matter, the net effect of Eq. 5 would 
still apply. 

Case (ii) concerns CH, originating from 
anoxygenic photoautotrophs or chemoauto-
trophs. Such prokaryotes use H,, reduced sul- 
fur. or Fe2' as electron donors in biosynthe- 
sis (e.g., H,S + CO, + hv + CH,O + 
H,O + S). If CH, were derived from such 
organic matter. H escape would leave behind 
oxidized S or Fe, contributing to net crustal 
oxidation (though free 0, is not produced). 
provided that the electron donor originated 
from the crust (e.g., metamorphic H,S). If the 
electron donor fluxed from the mantle, case 
(iii) would apply. 

Case (iii) concerns methanogenic CH, de- 
rived from mantle hydrogen in volcanic gas- 
es. Volatile fluxes to the atmosphere have 
probably been dominated by recycling of 
crustal sedimentary rocks since the early Pro- 
terozoic or earlier via metamorphism or vol- 
canism (29, 24). Volcanic gases derive from 
magma. whereas metamorphic gases are not 
directly associated with a silicate melt. Man- 
tle minerals buffer the redox state of volcanic 
gases, and when H is exported mantle min- 

Amount 
( X  lo', rnol 0, yearr') 

Action 

10 t 3 Production 
-1.7 Production 

0.5 to 1.9 Loss 
7.5 2 1.7 Loss 

3 2 1  Loss 

-0 Net change 

0.02 Absolute gain 
0.7 t o  7.0 Absolute gain 

"From (6). +FeS, is produced by bacteria that use sulfate and Fe3- as oxidants, with 1518 moles of 0, liberated per 
mole of sulfur (60). :The estimated net flux to the mantle is 3.8 x 1014g Fe3+ yearr' (36). Fe3* derives from 
hydrothermal alteration of oceanic basalt; i.e., 22FeO + 2S0,Z- + 4H- = FeS, + 7Fe30, + 2H20. Because 14 moles 
of Fe3+ are subducted for 2 moles of SOA2-, the net 0, flux to the mantle is (3.8 X 1014 g/56 mol Fe3+ yearr1)/14 = 

0.5 x l o T 2mole,year-' if the SO,'- ha'd been derive; from oxidation of S O ~ O ~  mole,year'11.9 x loi2 if the SO:- 
had been derived from oxidation of H2S. $Calculated from Eq. 1. 
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erals are oxidized to satisfy redox balance 
(30). Redox-sensitive elements in igneous 
rocks show that the oxygen fugacity of vol- 
canic gases has not changed by more than 0.5 
log,, units since 3.6 Ga (3I), presumably 
because of effective mantle buffering. These 
data rule out the suggestion that mantle oxi- 
dation was an important factor in the rise of 
0, (30, 32). Although mantle H can escape 
directly to space, biogenic CH, may have 
helped prevent sequestration of mantle reduc- 
tant into the Archean crust. If mantle H had 
transferred reducing power to solids in the 
crust (e.g., if H were efficiently scavenged by 
bacteria to reduce CO, to organic matter), the 
crust could have become gradually more re- 
duced. However, fermentation of organic 
matter to CH, and resultant H escape would 
allow mantle H to be lost to space. 

In all cases discussed above, Earth's over- 
all oxidation state increases. Case (iii) oxidiz- 
es the mantle. Cases (i) and (ii) oxidize the 
crust (e.g., as Fe,O, or SO,,-), which, in the 
long-term, must shift kinetics to favor the 
survival of free 0,. Free 0, is only produced 
in case (i), which includes oxygenic photo- 
synthesis. Oxygenic photosynthetic bacteria 
extract H from water, making them indepen- 
dent of abiotic sources of reductants; they 
would have dominated global productivity 
once they evolved (33), rendering the other 
cases inconsequential for effecting significant 
crustal redox changes. Biogenic CH, would 
be the major H-bearing species in the Arche- 
an stratosphere (16-IS), so Eq. 1 can be 
rewritten withx,,,, ;= 2fCH4 

Thus, if fCH4 in the Archean atmosphere 
were -100 to 2000 ppmv (Fig. 1 A), the 
effective flux of 0, into the crust due to 
CH,-induced H escape would be (0.7 to 
14) X 10" mol year-'. This rate is com- 
parable in magnitude to the (reversible) 
modern 0, flux due to organic burial of 
-lOI3 moles 0, year-' (Table 1) and would 
produce (0.7 to 14) X 10" mol 0, in - lo9 
year, comparable to the continental crustal 
reservoir of excess oxygen (Table 2). 

Large oxygen inventories include the con- 
tinental crust (Table 2) and mantle. The con- 
tinental crust's excess oxygen mostly resides 
in altered and metamorphosed igneous rocks. 
Archean basalts have a weight ratio Fe3+/ 
XFe several times greater than fresh basalt, 
for which Fe3+/XFe - 0.07. Metamorphic 
oxidation of crustal ferrous minerals by water 
alone requires extreme volumes of water 
(e.g., -1500-g water per 1-g magnetite to 
oxidize magnetite to hematite at 5 kbar and 
630°C), so SO,,- or 0, are often implicated 
as oxidants whenever Fe3+ is observed to 

increase (34). Transfer of the oxidizing pow- volatile recycling dominates, to first order 
er of to Fe3+ is consistent with low CH,-induced H escape to space would oxi- 
SO,' in Archean oceans relative to today's dize the crust by Eqs. 5 and 6. Because the 
oceans (35). In the ocean, continuous oxida- residence time of Archean 0, would be small 
tion facilitated by CH,-induced H escape (10,16), 0, would be sequestered into oxides 
would have produced Fe3+ from oceanic (e.g., Fe20,, C032p). Unlike volcanic 
Fez+. Thus, 0, would have been exported to gases, the average oxidation state of meta- 
the mantle through past subduction of Fe3+ morphic gases is independent of mantle buff- 
(Table 2). Ferric oxides are denser than man- ering and is controlled largely by the oxida- 
tle material with a refractory tendency for tion state of the original sediments (34, 37). 
deep subduction (36), so it is probable that Thus, the oxidation state of Archean meta- 
surviving Archean iron formations are a mere morphic gases would have increased over 
fraction of those originally deposited. time as crustal rocks became more oxidized 

The oxidation caused by H escape for (37). Reductants released by metamorphism 
greenhouse CH, levels (Fig. 1A) can be (H,, CO, H,S, etc.) would remove atmo-
integrated over time and compared with the spheric O,, enabling high fcH4 (10) and rapid 
crustal oxidized inventory (Table 2). For H escape. Oxidation resulting from such H 
the fCH4 required for warming the early escape would be expressed inside the crust 
Earth, cumulative oxidation [Fig. 1B, where the reductant originated. The surface 
curves (i) and (ii)] is consistent with esti- would remain weakly reducing, although riv- 
mates of the continental crust's inventory er fluxes of reductant to the ocean from 
of oxygen (Table 2). weathering would presumably have declined 

Net oxidation of crustal rocks in the past with increasing oxidation of uplifted rocks. 
would have increasingly enhanced the kinetic However, the details of metamorphic or 
stability of atmospheric 0,. Today, most de- weathering redox changes are superfluous: 
gassed carbon volatiles are recycled via meta- Le ChPtelier's principle demands that atmo- 
morphism rather than volcanism. The ratio of spheric and oceanic 0, sinks decrease as the 
metamorphic to volcanic gas fluxes has likely crust is irreversibly oxidized via CH,-
increased through time (7, 24). Thus, models induced H escape. This is consistent with the 
that equate the early Earth's H escape flux to prevalence of methanotrophs in the late Ar- 
fluxes of reductant from the mantle (30, 32) chean using increasing levels of dissolved 
are incorrect. These models neglect metamor- SO,'- or 0, (12). Then, in the early Protero- 
phic and continental sources of reductant, zoic, peak iron formation deposition occurred 
providing no explanation for the net oxidized (7) and sulfate-reducing bacteria became in- 
state of crustal reservoirs in Table 2. If crustal creasingly ubiquitous (35). 

Table 2. Oxidized and reduced reservoirs in Earth's continental crust. The Earth's exterior contains Fez03 
and SO,'-, which arose via oxidation, and atmospheric 0,. Oxidized species are expressed in terms of the 
0, moles required for their production; e.g., each mole of Fe3+ needed 1/4 mole 0, t o  be produced from 
Fez+. Reduced species are expressed in terms of 0, moles required for their consumption. By, billion 
years; Rox, oxygen in the continental crust; AOS, atmosphere, ocean, and sedimentary; RAos, oxygen in 
the AOS system; R,,,,, reduced carbon in  the continental crust. 

Species and reservoir 
Amount 

(X1OZ1 mol  0, equivalent) 
Size comparisons 

Oxidized species 
0, in the atmosphere and ocean* 0.037 
Fez03, SO,Z-, and 0, in the AOS system? 0.55 
Total Fe3+ in the continental crustf 1.7 t o  2.6 
Total Rox (excluding oxygen transferred 2.0 t o  2.9 

into carbonates) 
Net subducted Fe3+ loss over 4 By§ 2.0 t o  7.6 
Carbonate in the continental crust// 2.2 t o  7.1 

Reduced species 

Reduced carbon in the AOS system7 0.56 
Reduced carbon in felsic instrusives, c0.78 

gneisses, schists and felsic granulites1 
Total R,,,, <1.3 RredC 

Total reduced carbon delivered during 4.4 -1 - R r e d ~  

t o  3.8 Ga# 

*From (6). tFrom (61). :Much of this Fe3+ is in continental basalt that has been oxidized metamorphically or 
hydrothermally within the crust (36). §Crude estimate assuming today's net subduction rate (Table I),  uniformly 
extrapolated over 4 By, without accounting for the opposing influences of lower oceanic sulfate and higher seafloor 
spreading on early Earth. Lower estimate from (62), upper estimate from (61). IFrom (62). #The total 
accreted mass from impact bombardment would be on the order of lo2' kg (63). Celestial dynamics and D/H in the 
ocean suggest that impacts were due to asteroids, not comets. To arrive at this estimate, we assumed -1% average 
reduced carbon content of asteroids. 
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That the crust is at a higher oxidation state 
than the mantle from which it was derived 
suggests irreversible oxidation. Crustal oxygen 
fugacity varies by orders of magnitude from 
fayalite-magnetite-quartz (FMQ) to hematite-
magnetite (HM) buffer levels (38), whereas the 
upper mantle is near FMQ (39). Furthermore, 
photosynthesis produces organic carbon bal­
anced by oxides of sulfur and iron (after loss of 
(X), so buried organic carbon should balance 
oxidized materials in the crust if no H escape 
occurred. However, estimates of the continental 
crustal inventory show that oxidized species 
exceed reduced carbon by a factor of 1.5 to 2.2 
{Table 2). This budget excludes oxidized car­
bon, some of which may have started out re­
duced; i.e., when reduced carbon delivered by 
impact bombardment during 4.4 to 3.8 Ga is 
subtracted from the reduced inventory, the 
dominance of oxidized species increases. Time-
integrated subducted losses of Fe3+ to the man­
tle may also further increase the redox imbal­
ance (Table 2). A greater oxidized versus re­
duced inventory can be reconciled only by H 
escape, or preferential subduction of organic 
carbon relative to oxidized species, or both. 
Subduction of 12C-enriched graphitic carbon 
relative to carbonate is unlikely because marine 
carbonates do not become increasingly 12C-
depleted with geologic time (40). But we can­
not discount enhanced subduction of graphitic 
carbon relative to subduction of oxidized spe­
cies as a whole. Any irreversible, preferential 
loss of reductant into the mantle would be 
identical in its crustal redox effect to H escape 
to space. Nonetheless, oxidation due to CH4-
mduced H escape is chemically expected and 
can reconcile the observed redox inventory on 
its own. Other geochemical evidence of CH4-
induced H escape may reside in low values of 
D/H (deuterium/hydrogen) inferred for Arche-
an sea water (41). 
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We report on the direct observation of an oscillating atomic current in  a 
one-dimensional array of Josephson junctions realized wi th  an atomic Bose- 
Einstein condensate. The array is created by a laser standing wave, wi th  the 
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amplitude oscillation frequency is proportional t o  the microscopic tunneling 
rate of each condensate through the barriers and provides a direct measurement 
o f  the Josephson critical current as a function of the intermediate barrier 
heights. Our superfluid array may allow investigation of phenomena so far 
inaccessible t o  superconducting Josephson junctions and lays a bridge between 
the condensate dynamics and the physics o f  discrete nonlinear media. 
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