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converge to a clear limit in long enough 
series (6,  7, 17, 18).Toward the other end 
of the range of conceivable behavior lies 
density-independent stochastic growth, the 
prime example of which is a random walk, 
for which the variance grows linearly with 
time (7, 13). It seems (Fig. 2A) that the 
dynamics of animal populations, on the 
longest time scales available to us, lie 
somewhere between these two poles. These 
results show that population variability is 
not a single fixed quantity. The incorpora- 
tion of some measure of variance increase 
into widely used measures of temporal vari- 
ability (such as the coefficient of variation 
or the standard deviation of the logarithm 
of abundance) offers the possibility of sub- 
stantially improving the understanding of 
ecological variability. 

Often, the limiting factor while investi- 

gating ecological phenomena and in the 
development of theory to explain them has 
been the availability of suitable long-term 
data. As we have illustrated here, the 
GPDD now offers an unprecedented oppor- 
tunity to undertake broad-scale compara-
tive studies aimed at understanding the 
main features of population dynamics. 
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Ecological Forecasts: An Emerging Imperative 
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Planning and decision-making can be improved by access t o  reliable 
forecasts o f  ecosystem state, ecosystem services, and natural capital. 
Availability of new data sets, together wi th progress in  computation and 
statistics, wi l l  increase our ability t o  forecast ecosystem change. An 
agenda that would lead toward a capacity t o  produce, evaluate, and 
communicate forecasts of critical ecosystem services requires a process 
that engages scientists and decision-makers. Interdisciplinary linkages are 
necessary because of the climate and societal controls on ecosystems, the 
feedbacks involving social change, and the decision-making relevance of 
forecasts. 

Scientists and policy-makers can agree that 
success in dealing with environmental change 
rests with a capacity to anticipate. Rapid 
change in climate and chemical cycles, de- 
pletion of the natural resources that support 
regional economies, proliferation of exotic 
species, spread of disease, and deterioration 
of air, waters, and soils pose unprecedented 
threats to human civilization. Continued 
food, fiber, and freshwater supplies and the 
maintenance of human health depend on our 
ability to anticipate and prepare for the un- 
certain future (1).Anticipating many of the 
environmental challenges of coming decades 
requires improved scientific understanding. 
An evolving science of ecological forecasting 
is beginning to emerge and could have an 
expanding role in policy and management. 

An initiative in ecological forecasting 
must define the appropriate role of science in 
the decision-making process and the research 
that is required to develop the capability. 
Ecological forecasting is defined here as the 
process of predicting the state of ecosystems, 

ecosystem services, and natural capital, with 
fully specified uncertainties, and is contin- 
gent on explicit scenarios for climate, land 
use, human population, technologies, and 
economic activity. The spatial extent ranges 
from small plots to regions to continents to 
the globe. The time horizon can extend up to 
50 years. The information content of a fore- 
cast is inversely proportional to forecast un- 
certainty (2). A wide confidence envelope 
indicates low information content. A scenario 
assumes changes in "possible future bound- 
ary conditions (e.g., emissions scenarios). . . . 
For the decision maker, scenarios provide an 
indication of possibilities, but not definitive 
probabilities" (3).Scenarios can be the basis for 
projections, which apply the tools of ecological 
forecasting to specific scenarios. 

What Is Forecastable? 
Accurate estimation and communication of 
information content will determine the suc- 
cess of an ecological forecasting initiative. 
"Forecastable" ecosystem attributes are ones 

for which uncertainty can be reduced to the 
point where a forecast reports a useful 
amount of information. Information content 
is affected by all sources of stochasticity. 
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Low information content can result because 
drivers (and, thus, model structures) are un- 
certain, parameters are uncertain, and un-
known human responses to ecosystem change 
(or to forecasts of ecosystem change) affect 
outcomes. Many sources of stochasticity are 
typically ignored in ecological models. When 
reported at all, prediction uncertainties are 
typically confined to estimation error (4, 5), 
which is reduced by sampling and is often 
overwhelmed by other sources of uncertainty. 

Most daunting is the "inherent" uncertain- 
ty that results from strong nonlinearities and 
stochasticity. For example, the inherent un- 
certainty involved in extinction risks leads 
ecologists to disagree on the value of predic- 
tions from population viability models (6). 
Extinction forecasts are highly sensitive to 
poorly constrained assumptions (7). Inherent 
uncertainty will always limit informative 
forecasts of spread velocity for invasive 
plants with high reproductive rates. Even pre- 
cise knowledge of parameters that might be 
estimated, for example, through detailed 
study of long-distance dispersal, would do 
little to increase forecast information (8). 

Large inherent uncertainty does not nec- 
essarily neutralize efforts to anticipate 
change. Forecasting will improve as ecolo- 
gists identify the "slow" variables that fore- 
warn of consequences years in advance. 
Whereas deterministic weather forecasts con- 
front an approximate 2-week limit. probabi- 
listic climate prediction makes use of the 
system memory represented by sea-surface 
temperatures. The limitations imposed on a 
deterministic weather forecast by nonlineari- 
ties may not defeat efforts to provide infor- 
mative climate forecasts (9). There are many 
"slow variables" that constrain ecological 
processes (10). For example, successional 
change in forests is constrained by climate 
and soils. If these change slowly relative to 
tree life-spans, succession is predictable us- 
ing physiology and competitive interactions 
among trees (5, 11). Land-use change is de- 
termined by individual decisions that are in- 
fluenced by a variety of uncertain needs and 
goals. Yet decade-scale land-cover change 
can be predictable based on overriding con- 
trols imposed by topography and distance to 
market centers (12). 

Agricultural practices result from com-
plex decisions, but slow variables can be the 
basis for useful projections. Projections of 
subsidies to global food production (irriga- 
tion, fertilizers, and transport and storage of 
crops) (13) can inform forecasts of down- 
stream eutrophication in coastal fisheries and 
increases in atmospheric greenhouse gases 
(CH,, CO,, and N,O) (14). Ecologists can 
forecast how environmental change affects 
carbon storage in agriculture, by production 
forestry, and in natural ecosystems. Nitrogen 
deposition leads to predictable changes in 

plant composition and reduced carbon stor- 
age potential in tallgrass prairie soils (15). 
Knowledge of fertilizer and imgation effects 
on carbon storage in agroecosystems can be 
used to forecast how managed ecosystems 
will contribute to or stem the future rise of 
CO, in Earth's atmosphere (16). 

knalysis of projections can help anticipate 
change, even where forecasts are uninforma- 
tive. Although forecasts of population migra- 
tion rates will typically have low information 
content, analysis shows that productive re-
search will focus on factors affecting inva- 
sion potential, such as the mechanisms of 
long-distance dispersal and propagule pro- 
duction, as opposed to precise estimation of 
long-distance dispersal (8). Rates will remain 
uncertain, but we may improve our ability to 
predict introduced species that can success- 
fully invade (1 7). 

The developing capacity for prediction 
requires careful model evaluation. which can 
involve model selection, model averaging, or 
both. Model selection methods are routinely 
used in ecological applications. Because the 
models themselves are often uncertain, eco- 
logical forecasting may eventually rely more 
heavily on model averaging. Techniques for 
model evaluation developed in econometrics, 
finance, and meteorology make use of hind 
casting (IH), including the ability to identify 
turning points and events (12). 

Failing to accommodate the important 
sources of stochasticity makes for a forecast 
that contains less information than it purports 
(confidence intervals are misleadingly nar-
row). In the case of western North America's 
Northern Spotted Owl (Strix occide~ztalis), 
confidence intervals on population growth 
rates became basis for policy (19). Ecological 
models typically ignore variability among in- 
dividuals, which is large and has impact on 
population growth and decline. New compu- 
tational approaches represented by hierarchi- 
cal models accommodate multiple stochastic 
elements (20) and can be used to estimate the 
uncertainty in growth of populations having 
variability among individuals (21). New ap- 
plications of these recent techniques are used 
in weather and climate models ( 2 4 ,  but they 
are not exploited by ecologists. Inevitable 
failures that result from forecast uncertainties 
that are unrealistic would eventually erode 
confidence (9 ) .  

Data from Experiments and 
Monitoring 
Technical construction of forecasts requires 
initiatives to develop new or augment ex- 
isting data networks and to support exper- 
imental research. Experimental and obser- 
vational data that extend to landscapes or 
regions are a foundation for forecasting 
capability. Large experiments are critical. 
because landscape processes are often un- 

predictable from fine-grained studies (23. 
24).  The feedbacks from vegetation to cli- 
mate become important only when the spa- 
tial extent of a study exceeds a critical 
threshold. Factorial, whole-ecosystem ex-
periments with CO,, temperature, moisture. 
and nutrients may be the only way to de- 
termine forest responses to global change 
(25). For example, free-air CO, enrichment 
(FACE) studies show that the water stress 
expected from studies of individual plants 
may not be realized in an intact stand (26) .  

Data networks can provide a baseline for 
forecasting. Missing variables. low resolu- 
tion, inadequate duration, temporal and spa- 
tial gaps, and declining coverage are perva- 
sive limitations. Due to abandonment of pre- 
cipitation, stream-height, and discharge gaug- 
es, the capacity to forecast droughts and 
floods was greater 30 years ago than it IS 

today. Countries with the poorest hydrologl- 
cal networks (e.g., sub-Saharan Africa. arid 
regions of the former Soviet Union) have the 
most pressing water needs (27). The problem 
is not restricted to developing and transitional 
economies. There is an average density of 
one stream gauge per 1024 kmz in the lower 
48 states of the United States (28). Since 
1971 there has been a 22% decline in gauging 
stations that record flow on small U.S. rivers. 
Sustained monitoring is needed that can 
dovetail with forecasts in an adaptive feed- 
back design. 

The ability to anticipate exotic invasions 
would benefit from historic records of species 
introductions and their vectors (e.g., ship traf- 
fic). Where eventual colonization seems in- 
evitable, forecasts may guide mitigative ac- 
tions. Disease forecasting can also require 
extensive spatial and temporal data, such as 
those used to inform intervention for foot- 
and-mouth disease (29). Prediction of child- 
hood epidemics depends on long records of 
births and vaccinations (30). Cholera and nia- 
laria predictions require climate data, which 
determine growth and/or spread of pathogens 
and vectors (31). 

Developing technologies do not fully 
compensate for sparse data, but they promise 
to facilitate forecasting. Hydrologic forecast- 
ing and remote sensing, together with geo- 
physical tomography, can provide high-reso- 
lution coverage of precipitation and the etl 
fects of dams and irrigation (32). Biogeo- 
chemical cycles, hydrology, and biodiversity 
forecasts require land inventory and census 
data (33) in combination with satellite-based 
data (34). Satellites could be used to monitor 
habitat loss, a predictor of extinction risk. 

Satellite data could be used to develop 
global scenarios for disease spread in re-
sponse to environmental degradation and cli- 
mate change (35). Prevalence of hantavirus 
pulmonary syndrome (HPS), a viral disease 
characterized by acute respiratory distress 
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that has a high death rate, depends on the 
infection rates of its host, the common deer 
mouse (Perom,vscus mat~ictllatus) (36). The 
1993 HPS outbreak in the Southwest United 
States was attributed to unusual weather of 
199 1-1 992 that was quantified from Landsat 
Thematic Mapper satellite imagery. A model 
developed for the 1993 outbreak, which fol- 
lowed an El Niiio year, provided accurate 
predictions for the 1995 non-El Niiio year. 
Likewise, surveillance networks could im- 
prove understanding of climate constraints on 
malaria and its vectors (3 7, 38) and of climate 
events that forewarn of cholera risk (31). 

Forecasts in Decision-Making 
A 1981 report (39) predicting that the Eur- 
asian zebra mussel (Dveissena polymovpha) 
would become established in North America 
gained the attention of neither policy-makers 
nor the general public. Zebra mussels were 
discovered 5 years later and soon spread 
throughout the upper Midwest. In the Great 
Lakes alone, annual mitigation costs to indus- 
try of $20 to $100 million (38) will continue 
into the foreseeable future. Unquantified, 
noncommercial costs include losses of biodi- 
versity, such as the extirpation of native 
clams (40), and shifts in ecosystem energy 
flows and productivity (41). No regulatory 
actions can be traced to the 1981 vrediction. 
The invasion itself prompted a fluny of reac- 
tive legislation, culminating in the Nonindig- 
enous Aquatic Nuisance Prevention and Con- 
trol Act of 1990. 

The zebra mussel experience highlights 
issues concerning the state of environmen- 
tal science and its place in planning for 
global change. A developing capacity for 
prediction has not yet been integrated as 
part of a comprehensive prediction process 
(9, 42). Missed opportunities to engage 
ecological understanding have become a 
source for growing concern. The zebra 
mussel experience illustrates that the $138 
billion spent annually on control of nonin- 
digenous species (NIS) (43) can be blamed, 
in part, on failure to communicate. Fore- 
casts based solely on scientific objectives 
have little impact on policy (44) because 
there is no stakeholder (9). Climate change 
forecasts developed under the Intergovern- 
mental Panel on Climate Change have been 
influential, in part, because they respond to 
a request from governments. Priorities for 
ecological forecasting must come from di- 
alogue that ensures active participation by 
policy-makers, managers, and the general 
public. 

Some experience suggests that a proactive 
approach holds promise. Chlorofluorocarbon 
use has declined, in part, due to the Montreal 
Protocol, which was drafted in response to 
scenarios for ozone-depleting chemicals in 
the atmosphere. Scenarios helped propel the 

ban of DDT and the Kyoto discussions on 
greenhouse gasses. Policy-makers can re-
spond to research that is motivated by man- 
agement or conservation interests. For exam- 
ple, population studies, together with 30-year 
discharge records, were used by the Puerto 
Rican Aqueduct and Sewage Authority to 
develop a system for water withdrawal from 
streams to meet human demands while min- 
imizing the loss of migrating freshwater 
shrimp (45). 

Ecologists should increasingly consider 
their own role in the decision-making pro- 
cess. "Bet-hedging" uncertainty may in-
volve choosing policies that are relatively 
insensitive to uncertainty, that increase the 
ability of ecosystems to provide services 
even if a surprise occurs, or both. Ecolo- 
gists can help develop options. For exam- 
ple, maintaining local species diversity and 
heterogeneity of land cover may stabilize 
regional primary production despite uncer- 
tain changes in climate. Limnologists have 
shown that optimal nutrient loadings to 
lakes decrease if the information content of 
ecological forecasts is taken into account 
(46). Ecologists have found correctives for 
eutrophication that offer managers a num- 
ber of options. 

In situations where uncertainties are large 
and impossible to quantify, information con- 
tent is necessarily low and decisions can be 
complex. Rarely can policies direct an out- 
come. Instead, they are often designed to 
affect outcomes by influencing choices made 
by vast numbers of people. The effects can 
extend beyond their intended targets and even 
have countervailing impacts. For example, 
restnctions on tree harvest in one region can 
lead to intensified harvesting elsewhere, as 
trade offsets local scarcity. Thus, environ- 
mental restrictions can lead to export of en- 
vironmental hazard from one jurisdiction to 
another. 

When reaction to anticipated change is pos- 
sible, it is appropriate to explore scenarios that 
are as consistent as possible with current scien- 
tific understanding but are not predictions (47, 
48). Scenarios can embrace ambiguous and un- 
controllable drivers, such as climate or global- 
ization of markets, and nonlinear and unpredict- 
able dynamics, such as the reflexive responses 
of people. Scenarios provide insight into drivers 
of change, implications of current trajectories, 
and options for action. Alternative policies can 
be considered in light of contrasting scenarios 
and to compare their robustness to possible 
futures. 

Ecologists may provide decision-makers 
with information as part of an integrated 
perspective of vulnerability to extreme 
events and their potential consequences. 
For example, the tragic human toll of Hur- 
ricane Mitch in Central America was exac- 
erbated by degradation due to overexploi- 

tation of fuels and construction materials. 
I3cologists could have foreseen that the 
floods of Hurricane Floyd would release 
hog waste into North Carolina rivers and 
sounds. Ecological forecasting may target 
the vulnerabilities that decision-makers 
must consider, if not the events then~selves. 

Next Steps 
Linking science with decision-making will 
depend on scientific accuracy and effective 
communication. Sources of uncertainty, 
their potential impacts on forecast informa- 
tion, and the identification of overriding 
controls that change slowly must be con-
sidered when deciding where efforts can be 
of most value. Two broad classes of rec- 
ommendations address these goals. First is 
a definition of forecasting priorities 
through dialogue involving scientists, man- 
agers, and policy-makers. Priorities are 
based on potential benefits balanced 
against costs of business as usual. They 
should meet user needs and be scientifical- 
ly feasible. 

The second recommendation involves 
definition of a science agenda that includes 
ii) identifying data and research needs and 
(,ii) setting priorities for estimation, propaga- 
tion, and communication of uncertainty. Fo- 
cus should be on the problems for which 
forecasts are now possible and those that are 
not presently forecastable but could become 
forecastable within a decade. 

References and Notes 
1. Supplemental text 	is available at Science Online at 

www.sciencemag.org/cgi/content/full/293/5530/ 
657lDC1. 

2. Adapted from the notion of (generalized) Fisher In- 
formation (as opposed to the Information Theory 
definition as the log-likelihood ratio). 

3. M. 	 MacCracken, www.esig.ucar.edu/socasp/zine/26/ 

guest.html. 


4. R. Lande. Am. Nat. 130, 624 (1997). 
5. S. W. Pacala et dl., Ecol. Monogr.66. 1 (1996). 
6. B. W. Brook et al.. Nature 404, 385 (2000). 
7. D. Ludwig. Ecology 80. 298 (1999). 
8. 	 j. 5. Clark, M. Lewis, L. Horvath, Am. Nat. 157, 537 

(2001). 
9. National Research Council, Making Climate Forecasts 

Matter (National Academy Press. Washington, DC. 
1999). 

10. S. 	 R. Carpenter. M. G. Turner, Ecosystems 3, 495 
(2000). 

11. 	H. H. Shugart, A Theory of Forest Dynamics: The 
Ecological Implications of Forest Succession Models 
(Springer-Verlag, New York, 1984). 

12. D. N. Wear, P. Bolstad. Ecosystems 1, 575 (1998). 
13. D. Tilman et al., Science 292, 281 (2001). 
14. G. 	 P. Robertson, E. A. Paul. R. R. Harwood, Science 

289, 1922 (2000). 
15. D. Wedin, D. Tilman. Science 274. 1720 (1996). 
16. W. H. Schlesinger, Science 284, 2095 (1999). 
17. C. S. Kolar. D. M. Lodge. Trends Ecol. Evol. 16, 199 

(2001). 
18. G. G. Judge. W. E. Griffiths. R. C. Hill. W. E. Lutkepolh, 

T. C. Lee, The Theory and Practice of Econometrics 
(Wiley and Sons, New York. 1982). 

19. 	S. P. Harrison, A. Stahl, D. Doak, Conserv. Biol. 7, 950 
(1993). 

20. B. P. Carlin. T. A. Louis. Bayes and Empirical Bayes 
Methods for Data Analysis (Chapman & Hall, Boca 
Raton, FL, 2000). 

www.sciencemag.org SCIENCE VOL 293 27 JULY 2001 	 659 

http:Monogr.66


ECOLOGY T H R O U G H  T I M E  -

21. Hierarchical modeling 	allows for simplification of 30. J. D. Earn, P. Rohani, B. M. Bolker, B. T. Grenfell, 40. D. L. Strayer, 1. North Am. Bentholog. Soc. 18. 74 
models that have multiple sources of stochasticity by Science 287, 667 (2000). (1999). 
factoring t o  produce a set of conditional distribu- 31. M. Pascual, X. Rodo, S. P. Ellner, R. Colwell, M. J. 41. T. F. Nalepa, G. L. Fahnenstiel, J. Great Lakes Res. 21, 
tions. For instance, in population dynamics, the n Bourna, Science 289, 1766 (2000). 	 41 1 (1995). 
members of a population can together define an 32. Grand Challenges in Environmental Sciences: Special 42. D. Sarewitz, R. A. Pielke Jr., R. Byerly Jr., Prediction in 

(intractable) n dimensional distribution of demo- Report of the National Academy of Sciences (National Science and Policy (Island Press, Washington, DC, 

graphic rates. A hierarchical structure renders the Academy of Sciences, Washington, DC, 2000). Avail- 2000).

problem analyzable by factoring i t  into n conditional able at: w.nap.edu/openbook/0309072549/html. 43. D. Pimentel, L. Lach, R. Zuniga, D. Morrison. Bio- 

distributions that submit t o  Markov Chain Monte 33. 1. F. Richards, in The Earth as Transformed by Human Science 50, 53 (2000). 

Carlo integration (19). J. S. Clark, in preparation. 44. D. Sarewitz, R. A. Pielke Jr., in (42) pp. 11-22. 


22. Hierarchical models developed to estimate the many Action. B. L. Turner et al., Eds. (Cambridge Univ. Press. 

parameters needed for climate modeling can be New York, 1990). pp. 163-178. 45. J. P. Benstead, J. G. March, C. M. Pringle, F. N. Scatena, 

adapted for estimation of invasion speed [C. Wikle, 34. N. Ramankutty, J. Foley, Global Biogeochem. Cycles Ecol. Appl. 9, 656 (1999). 

R. F. Milliff, D. Nychka, L. M. Berliner, 1. Am. Stat. 13, 997 (1999). 46. S. R. Carpenter. D. Ludwig. W. A. Brock, Ecol. Appl. 9, 

Assoc. 96. 382 (2001)]. 35. Under the Weather: Climate. Ecosystems, and lnfec- 751 (1999). 

23. S. R. Carpenter, Ecology 77, 677 (1996). tious Disease (National Academy of Sciences, Wash- 47. P. Raskin, G. Gallopin, P. Gutman, A. Hammond, R. 
24. J. S. Clark et al.. Am. I .  Bot. 86, 1 (1999). ington, DC, 2001). 	 Swart, Bending the Curve: Toward Global Sustainabil- 
25. P. B. Reich et al., Nature 410, 809 (2001). 36. G. E. Glass et al., Emerging Infect. Dis. 6, 238 (2000). ity. Pole Star Report no. 8 (Stockholm Environment 
26. D. 5. Ellsworth. Tree Physiol. 20, 435 (2000). 37. C. Dye, P. Reiter. Science 289, 1697 (2000). Institute, Stockholm, 2000). 
27. E. Stokstad. Science 285. 1199 (1999). 38. D. J. Rogers, S. E. Randolph, Science 289, 1763 (2000). 48. N. Nakicenovic, Emissions Scenarios (Cambridge Univ. 
28. 	T. Brabets, Evaluation of the Streamflow-Gaging Net- 39. Bio-Environmental Services. The Presence and Impli- Press, Cambridge, 2000). 

work of Alaska in Providing Regional Streamflow In- cation of Foreign Organisms in Ship Ballast Waters 49. Supported by the Ecological Society of America, the 
formation, U.S. Geological Survey, Water Resources Discharged into the Great Lakes, vols. 1 and 2, pre- Aldo Leopold Leadership Program, the National Sci- 
Investigations Report 96-4001 (1996). pared for the Water Pollution Control Directorate, ence Foundation, the National Center for Ecological 

29. N. Ferguson, K. Donelly, R. M. Anderson, Science 292, Environmental Protection Service (Environment Can- Analysis and Synthesis, and the Center for Global 
1155 (2001). ada, Ottawa, Ontario, 1981). Change at Duke University. 

Mindthe aaD, 

NEW! Science Online's Content Alert Service 
With Science's Content Alert Service, European subscribers 
(and those around the world) can eliminate the information gap 
between when Science publishes and when it arrives in the post. 
This free enhancement to your Science Online subscription 
delivers e-mail summaries of the latest news and research 
articles published each Friday in Science - instantly.To sign 
up for the Content Alert service, go to Science Online and 
eliminate the gap. 

Science 

www.sciencemag.org 

For more information about Content Alerts go  to www.sciencemag.org. 

Click on the Subscription button, then c l ick on the Content Alert button. 


660 	 27 JULY 2001 VOL 293 SCIENCE www.sciencemag.org 

http:www.sciencemag.org

