
P E R S P E C T I V E S :  CL IMATE 

Open Windows 
to the Polar Oceans 
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T he sea ice cover on the polar oceans 
reflects up to 80% of the solar radia- 
tion reaching its surface back into 

space and so plays a major role in climate 
change by affecting Earth's temperature. In 
contrast, the open ocean only reflects 10% 
of the solar energy and absorbs the rest. 

Thus, an increase in 
Enhanced online at the sea ice cover 
www.sciencemag.org/cgil cools Earth's surface, 
content/fulV292/5522/1670 thereby promoting 

further advances in 
sea ice; retreating sea ice warms Earth's 
surface, promoting h t h e r  retreats in sea 
ice. This ~ositive feedback is believed to be 
the main reason for the polar amplification 
of the warming observed in climate model 
scenarios for the 2 1 st century (1,2). 

The polar sea ice is not a large, solid lid 
but is broken into floes of various size and 
thickness by tides, surface waves, and variable 
winds. Sea ice motion due to winds and ocean 
currents varies irregularly on small scales and 
is organized in large-scale drift patterns like 
the Arctic Transpolar Drift Stream, which car- 
ries water and ice from Siberia across the pole 
and down the east coast of Greenland. Large 
holes in the sea ice, called polynyas, may per- 
sist for years, through mechanisms that are not 
well understood. On page 1697 of this issue, 
Holland (3) suggests an interesting new 
mechanism for the formation of the largest 
polynya ever observed. 

Short-term, local divergent sea ice drift 
creates short-lived (hours to days) long, nar- 
row channels of open water called leads, 
which are about 100 m wide and up to sever- 
al kilometers long. Larger, rounder features 
called polynyas evolve during large, long- 
term divergences. Their sizes vary from a few 
hundred meters to several hundred kilome- 
ters, and they may persist for weeks to years. 
In wintertime, leads and polynyas amount on 
average to about 5% of the ice-covered area. 

There are two types of polynyas (see the 
figure). Coastal polynyas are created and 
maintained by divergent sea ice drift due to 
steady offshore winds. Open ocean polynyas 
are created and maintained by divergent sea 
ice drift and the heat stored in the ocean, 
which is supplied to the surface layers, thus 
preventing the formation of sea ice. 
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In polynyas (and leads), the ocean is in di- 
rect contact with the cold atmosphere. 
Polynyas are therefore open windows to the 
polar ocean that allow enhanced exchange of 
heat, water vapor, and other gases, such as 
COz, between ocean and atmosphere. The 
heat flux from the ocean to the atmosphere in 
a polynya may exceed 500 W m-2, compared 
with 30 W m-2 over the adjacent sea ice. 

In coastal polynyas, where the water is 
shallow, the ocean quickly cools down to 
the freezing point at all depths. The heat 
supplied to the atmosphere then originates 
only from the latent heat of hsion of the 
continuous production of sea ice (4). Dur- 
ing sea ice formation, oceanic salt is re- 
leased into the water because it is not in- 
corporated into the ice crystals. This salt 
increases the local density of the ocean 
water, which therefore sinks to deeper lay- 
ers of the ocean. Coastal polynyas there- 
fore represent important sources of dense 
deep and bottom water, which ventilate 
the abyss and drive the oceanic global 
conveyor belt (5). 

In open ocean polynyas, the supply of 
oceanic heat is less restricted. Therefore, 
large amounts of sensible heat (the amount 
of energy necessary to change a liquid to a 
vapor at constant temperature and pres- 
sure) from deeper ocean layers are lost to 
the atmosphere and little ice is created. 
The substantial cooling of the ocean water 
can lead to deep convection, which ho- 
mogenizes the ocean waters to great 
depths and produces deep water in the 
open ocean. Consequently, both types of 
polynyas have a large influence on global 
ocean circulation and on Earth's climate. 

There are two prerequisites for open 
ocean polynya formation and maintenance: 
Heat stored in deeper ocean layers must 
easily be transferred to the surface during 
convection, and a divergent sea ice drift 
must prevent the ice from entering the 
polynya and melting inside. Melting sea ice 
consisting mostly of fresh water would sta- 
bilize the oceanic stratification and discon- 
nect the surface from the deeper ocean. The 
divergent sea ice drift during the initial 
stages of polynya formation may originate 
from divergent winds or ocean currents. 

The largest polynya ever seen was the 
Weddell Polynya, an open ocean polynya 
the size of Great Britain that was observed 
by satellite remote sensing from 1974 to 
1976 during three consecutive winters (6). 
Unfortunately, no in si t-  observations were 
carried out during that time. Deep-water 

Breaking the Lid. Sea ice acts as an insulating lid that effectively reduces the communication be- 
tween atmosphere and ocean. But sea ice cover is not continuous. Near the coast, offshore winds 
may create coastal polynyas; in the open ocean, divergent sea ice drift with large upward heat 
fluxes may lead t o  open ocean polynyas. Salt rejection from the forming ice and strong heat fluxes 
in  the polynyas create deep and bottom waters, which drive the global thermohaline circulation of 
the ocean. 
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ferent power regimes, lasers can be used 
to exert a substantial force on atoms, Single-Molecu[eSpectroscopy molecules, and beads). Different spectro- 
scopic signatures can be used, of which flu- 
orescence is the most popular because of its 
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inherent sensitivity. Fluorescence studies 
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