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form stable antiparallel overlaps in which 
motors are present (24-26). It will be in- 
teresting to determine which properties are 
responsible for the stabilization of such 
antiparallel MT overlaps. 

In exploring the generic steady-state pat- 
terns that could emerge from mixtures of MTs 
and one or two oligomeric motors of opposite 
directionality, we have found a limited number 
of patterns: radial MT structures, either asters or 
vortices, or networks of poles connected by 
aligned MTs. Using computer simulations, we 
found that changes in the value of many param- 
eters did not affect the topology of the pattern, 
whereas changes in other parameter values 
did. Those parameters are potential key tar- 
gets for regulation. Many complex biological 
structures are also collective out-of-equilibri- 
um assemblies. In the past, they have been 
described mainly by attributing qualitative 
"functions" to some of their constituent mol- 
ecules. Here, we have used kinetic parame- 
ters describing the properties and interactions 
of the molecules to deduce the structures 
produced by the ensemble. 
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Potl, the Putative Telomere 

End-Binding Protein in Fission 


Yeast and Humans 
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Telomere proteins from ciliated protozoa bind t o  the single-stranded C-rich 
DNA extensions at  the ends of macronuclear chromosomes. We have now 
identified homologous proteins in  fission yeast and in humans. These Po t l  
(protection o f  telomeres) proteins each bind the C-rich strand of their own 
telomeric repeat sequence, consistent with a direct role in  protecting chro- 
mosome ends. Deletion of the fission yeastpot?' gene has an immediate effect 
on chromosome stability, causing rapid loss of telomeric DNA and chromosome 
circularization. It now appears that the protein that caps the ends of chromo- 
somes is widely dispersed throughout the eukaryotic kingdom. 

Telomeres, the protein-DNA complexes at 
chromosome ends, protect chromosomes from 
degradation and end-to-end fusion, and they 
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serve as substrates for extension by telomerase. 
The telomeric DNA terminates with a single- 
stranded overhang of the G-rich strand in cili-
ated protozoa ( I ) ,  yeast (2, 3), and mammalian 
cells (4-6). In budding yeast, the Cdcl3 pro- 
tein binds to this single-stranded DNA, Protect- 
ing the chromosome end (7, 8)  and recruiting 
telomerase (9). In the h~~otrichousciliate 
Oqtricha nova, an a-p protein heterodimer 
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binds specifically to the single-stranded telo- 
meric DNA (10-12) to form a ternary complex 
(13), the crystal structure of which has been 
solved (14). Euplotes crasstis, another hypo- 
trich, uses an a subunit but apparently no P 
subunit (IS). These yeast and ciliate end-bind- 
ing proteins have no obvious sequence similar- 
ity to each other, and no homologs have been 
reported in distant species such as mammals. 
Indeed, the t-loop DNA structure that can form 
at the ends of mammalian chromosomes (16) 
might have been thought to obviate the need for 
an end-binding protein. 

Database searching has now revealed that 
the Schizosaccharomyces pombe open reading 
frame (ORF) SPAC26H5.06 contains a region 
of limited similarity to the a subunits of telo- 
mere proteins from Oqtricha and other ciliates 
(Fig. 1A). Conservation is most apparent in a 
region of about 120 amino acids near the NH,- 
termini of the proteins (Fig. lB), where the S. 
pombe and 0 .  nova sequences share 19% iden- 
tity and 40% similarity. This region coincides 
with the most highly conserved domain within 

the ciliate sequences (42% amino acid identity 
and 61% similarity between 0 .  nova and E. 
crassus). Because the ciliate telomere proteins 
are thought to act as protective caps at the ends 
of macronuclear chromosomes (10, 14), we 
named the S. pombe gene potl+ (protection of 
telomeres). 

To examine whether potl+ is indeed in- 
volved in telomere maintenance, we construct- 
ed a hetmzygous diploid potl+lpotl- strain 
(1 7). Tetrad dissections revealed that the potl- 
spores formed very small colonies compared 
with their potl+ sisters (Fig. 1C). This imme- 
diate phenotype is in stark contrast to that ob- 
served for strains lacking the catalytic subunit 
of telomerase (MI-), which form normal-sized 
colonies upon sporulation (Fig. 1C) and only 
begin to show a growth defect after -75 gen- 
erations, when telomeres have shortened con- 
siderably (18). For -10 generations after 
sporulation, potl- colonies contained a large 
number of elongated cells (Fig. ID), most of 
which failed to undergo further division. DNA 
staining revealed a high incidence of chromo- 
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Fig. 1. Sequence comparison and morphological phenotype associated with deletion of pot7+. (A) 
Multiple sequence alignment of the NH,-terminal regions of the a subunits of ciliate telomere proteins 
[Ec, Euplotes crassus (75); Sm, Stylonychia mytilis (39); Ot, Oxytrcha trifallax (40); On, 0. nova (7 I)] and 
yeast and human Potlp (Hs, Homo sapiens; Sp, 5. pombe). Starting and ending amino acid numbers are 
shown for each sequence. Sequences were aligned in ClustalW using the Blosum35 score table followed 
by minor manual adjustment. Shaded amino acids are conserved in four or more sequences. Single- 
letter abbreviations for amino acid residues are as follows: A, Ala; C, Cys; D, Asp; E, Clu; F, Phe; C, Cly; 
H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Cln; R, Arg; 5, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr. 
(B) Domain structure of the 0. nova telomere protein and yeast and human Pot1 p. Positions of OB folds 
(74) and functional domains (23) are depicted for the 0. nova telomere protein. The positions of the 
regions aligned in (A) are indicated by open boxes. (C) Colony morphology of potl+, pot7-, trtl+, and 
trtl- after tetrad dissection and germination. (D) Phase-contrast micrographs of potl+ and pot?- cells 
5 to 10 generations after germination. Scale bar, 5 pm. (E) Cells as in (D) but stained with 4',6'- 
diamidino-2-phenylindole (DAPI) to reveal chromosome segregation defect in potl-. Scale bar, 5 pm. 

some missegregation, often leading to daughter 
cells without any chromosomal DNA (Fig. 1E). 
These phenotypes diminished during succes- 
sive restreaks; after -75 generations, the colo- 
ny and cell morphology appeared to be wild 
type, a development reminiscent of the emer- 
gence of survivors in strains lacking functional 
telomerase (1 8). 

Deletion of pot l+ had a marked effect on 
telomere stability. When genomic DNA from 
potl- strains was analyzed by Southern blot- 
ting, telomeric sequences could not be detect- 
ed (Fig. 2A). Using three probes that recog- 
nize distinct subregions of the telomere-asso- 
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B 
kb + + - - + pot1 
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Fig. 2. Telomere phenotype in pot7- strains. (A) 
Colonies from the indicated strains were used to 
inoculate 10 ml of YES (yeast extract supple- 
mented with amino acids) medium at 3Z°C. Cells 
were grown to late log phase, and genomic DNA 
was prepared. After digestion of DNA (-20 kg) 
with Eco RI, samples were subjected to 1.1% 
agarose gel electrophoresis, transferred to a nylon 
membrane, and hybridized to a telomeric probe. 
As a loading control, a probe against the single- 
copy pol a gene was used. (B) Cenomic DNA 
(-20 pg) was digested with Nsi I, fractionated by 
0.8% agarose gel electrophoresis, transferred to a 
nylon membrane, and hybridized to a TAS2 probe 
(78). (C) The blot in (B) was stripped (34) and 
hybridized to a TAS3 probe. 
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ciated sequence (TAS), we observed hybrid- 
ization signals with the telomere-distal TAS3 
probe (Fig. 2C), but not with the more telo- 
mere-proximal TAS 1 and TAS2 probes (Fig. 
2B) (19). These results indicate that -5 kb of 
terminal sequence had been lost. 

One way the potl- cells might survive 
without telomeres is through chromosome 
circularization (18, 20). When DNA from 

potl- strains was digested with Not I (Fig. 
3A) and analyzed by pulsed-field gel electro- 
phoresis, the terminal C, I, L, and M frag- 
ments of chromosomes I and I1 were missing, 
whereas internal fragments were unperturbed 
(Fig. 3B). Hybridization with gene-specific 
probes revealed the presence of two new 
bands corresponding to C+M and I+L, the 
products of chromosome circularization (Fig. 
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Fig. 3. Pulsed-field gel electrophoresis and detection of terminal fragments. (A) Schematic showing 
the location of Not I restriction sites on S. pombe chromosomes (47). Only terminal fragments on 
chromosomes I and II are labeled. (0) Ethidium bromide-stained pulsed-field gel containing Not 
I-digested DNA from two pot7+ strains and six independent pot7- isolates. Cenomic DNA was 
prepared, Not I-digested, and fractionated by pulsed-field gel electrophoresis as described (34). (C) 
DNA from the gel shown in (B) was transferred to  a nylon membrane and hybridized to  
gene-specific probes on the C, I, L, and M fragments. 

a b c d e  f a b c d e  f 
a b c d e f  

Fig. 4. DNA-binding specificity of SpPotlp. (A) C-strand (CCTAACCCTAACCCTCTAACCTGTAAC- 
CTCTAACCCTCTAACC) and C-strand (CCTTACACCCTTACACCTTACACCTTACACCCTTACC- 
CTTACC) were 5' 32P-labeled using T4 polynucleotide kinase and [y-32P]adenosine triphosphate. 
Duplex was generated by annealing equimolar amounts of radiolabeled C-strand and unlabeled 
C-strand. Potlp (50 ng) was incubated with the indicated DNA substrates (1 ng) for 15 min at 20°C 
in 10 pl of 25 mM Hepes (pH 7.5), 1 mM EDTA, 50 mM NaCI, 5% glycerol, and 2.5 p M  PBolil09 
(CCCTAACCATTTCATTATTCCAATTCCACCTCCTTTTCCA) as nonspecific competitor. Complex- 
es were analyzed by electrophoresis at 4OC through a 4 to 20% tris-borate EDTA gel (Invitrogen) 
run at 150 V for 80 min. The Potlp-DNA complex is indicated by an open arrow. (0) Same as (A) 
except that the added protein (100 ng) contained truncated Potlp as well as full-length protein. 
Truncated Potlp-DNA complex is indicated by a solid arrow. (C) Binding of hPotlp to  human 
C-strand (CCCTAA),, C-strand (TTAGCC),, and duplex DNA. 

3C). Circularization of all three chromo- 
somes has been found only in S. pombe 
strains that fail to maintain chromosome 
ends, supporting the conclusion that potl + is 
required for telomere maintenance. 

The rapid loss of terminal DNA in potl- 
strains and the sequence similarity of Potlp 
with telomere end-binding proteins from cil- 
iated protozoa suggested that Potlp has a 
direct role in the protection of telomeres. To 
investigate whether Potlp binds telomeric 
DNA, we expressed the protein as a His6- 
fusion protein in Escherichia coli (21). In an 
electrophoretic mobility shift assay, the puri- 
fied Potlp fusion bound specifically to the 
G-rich strand of S. pombe telomeric DNA, 
but not to the complementary C-rich strand or 
double-stranded telomeric DNA (Fig. 4A) 
(22). The binding affinity of Potlp for telo- 
meric repeats at the 3' end of an oligonucle- 
otide was greater by a factor of -5 relative to 
its affinity for the same telomeric repeats 
flanked by nontelomeric sequences (19). 

Truncated forms of Potlp, resulting from 
either premature termination or proteolytic 
degradation, copurified with the full-length 
protein. The affinity of COOH-terminally 
truncated Potlp for DNA was about an order 
of magnitude greater than that of the full- 
length protein (apparent dissociation constant 
- 10 nM versus - 100 nM), but the protein 
retained the same specificity (Fig. 4B). Fur- 
ther purification and analysis by mass spec- 
troscbpy showed that the prominent complex 
(solid arrow in Fig. 4B, lane d) was attribut- 
able to the binding of a 22-kD NH2-terminal 
fragment of Potlp. Increased DNA binding 
has also been observed with the COOH-ter- 
minally truncated a subunit of the 0. nova 
telomere protein (23), further supporting a 
functional relationship to Potlp. Intramolec- 
ular inhibitory sequences play a role in mod- 
ulating the DNA binding characteristics of 
many transcription factors [e.g., (24) ] ,  and a 
similar situation may pertain to Potlp. 

The identification of related telomere pro- 
teins in ciliates and fission yeast prompted us to 
search for homologous proteins in other eu- 
karyotes. A BLAST search with the S. pombe 
Potl protein sequence revealed the product of 
human cDNA FLJ11037 as the top-ranked 
match (P = 3 X lop6). We refer to the protein 
encoded by this cDNA as hPotlp (human Potl 
protein). Sequence alignments of hPotlp with 
the fission yeast and ciliate proteins revealed 
the highest conservation near the NH2-termi- 
nus, where the S. pombe and human proteins 
share 26% identity and 48% similarity (Fig. 
1A). Over the same region, the human and 0 .  
nova protein sequences are 23% identical and 
39% similar. 

Human POT1 mRNA was detected in all 
tissues examined (25). This finding is consistent 
with the idea that hPOTl is a housekeeping 
gene required to ensure the integrity of chro- 
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mosome ends in all cells. In contrast, human 
telomerase reverse transcriptase mRNA is de- 
tected primarily in immortalized and germ line 
cells, but not in most somatic cells (26-28). 

The hPOTl gene was cloned from ovary 
cDNA and was found to encode a 71-kD 
polypeptide. Recombinant hPotlp (with an 
NH,-terminal His, tag) was expressed in E. 
coli and purified (29). As with the S. pombe 
Potl protein (SpPotlp), a fraction of the 
hPotlp was lacking COOH-terminal se- 
quences as a result of degradation or prema- 
ture termination. However, hPotlp produced 
in E. coli showed the same DNA binding 
specificity as full-length hPotlp from in vitro 
translation reactions (19). In bandshift assays, 
hPotlp bound to the G-rich strand of human 
telomeric DNA (Fig. 4C). In contrast, bind- 
ing was not observed with the complementa- 
ry C-rich strand or with double-stranded telo- 
meric DNA. 

Telomeric DNA binding by both the S. 
pombe and human Potl proteins was unaffected 
by the presence of a 60-fold excess of boiled 
herring sperm DNA and a 2000-fold excess of 
an oligonucleotide of nontelomeric sequence 
(19). To further investigate the sequence spec- 
ificity, we tested whether the G-rich strand of 
telomeric DNA from different species could 
serve as a substrate in DNA-binding assays. In 
a side-by-side comparison, SpPotlp bound the 
human telomeric sequence less well than it 

bound the S. pombe sequence (Fig. 5A). In 
competition experiments, a 1000-fold excess of 
unlabeled S. pombe sequence abolished binding 
to the radiolabeled substrate, whereas unlabeled 
human and 0. nova telomeric DNAs reduced 
binding by only -50% and <2%, respectively 
(Fig. 5B). Similarly, hPotlp showed only weak 
biding to the S. pombe sequence (Fig. 5C), 
which also was not an efficient competitor (Fig. 
5D). In contrast, the presence of a 1000-fold 
excess of the 0. nova sequence reduced binding 
to less than 25%. In summary, each protein 
shows specificity for binding its own telomeric 
DNA sequence. 

Biochemical and structural data have long 
suggested a role for the Euplotes and Oxytricha 
telomere proteins in protecting the ends of chro- 
mosomes (12). However, as these organisms are 
not amenable to genetic studies, demonstration 
of such a capping function in vivo had been 
lacking. By deleting the S. pombe potl+ gene, 
we have now provided evidence that this group 
of proteins plays a pivotal role in preventing 
rapid degradation of chromosome ends in vivo. 
Loss of Potlp led to immediate chromosome 
instability, whereas the absence of functional 
telomerase causes gradual telomere shortening 
over many generations without an immediate 
effect on chromosome stability and cell viability 
(18, 26). It therefore appears that, at least in S. 
pombe, Potlp is more important than telomerase 
for telomere maintenance in the short term. 

Fig. 5. Substrate speci- d 
ficitv of S.  omb be and A F -8 B 
human potip. (A) Bind- $ B w @ ing of SpPotlp to S. - - - + - + SpPotlp 3 2 competitor  omb be and human C- .L . . 

strands (DNA seauenc- . A 
es as in hg. 4). ( ~ j  Bind- 
ing reactions (10 p.1) 
contained SpPotlp (50 
ng) and radiolabeled S. 

Y 
pombe C-strand (15 pg; t i  
CCTTACACGCTTAC- 
ACCTTACACCTTAC- 
AC) in the presence of 
lo-, 100-, and 1000- I) &-DNA .) .) 
fold excess of unlabeled -DNA 
S. pombe (C-strand se- 
quence as in Fig. 4A), a b c d a b c d e f g h  i j k 
human (TTACCC),, or 
0. nova (CCCGTTT- 3 
TCCCCTTTTCGCCT) c e- 8 8 D DNA. (C) Binding of 
hPotlp to S. pombe - - - + - + h ~ o t i p  3 2 2 competitor 
and human C-strands. L A. 

(D) Binding of hPotlp 
to human C-strand un- 
der the same conditions 
as in (B). Clr 

a b c d  a b c d e f g h  i j  k 

In addition, Potlp may be involved in reg- 
ulating the access of telomerase andlor other 
enzymes to the chromosome terminus. Recon- 
stitution of the Oqtricha a-p-telomeric DNA 
complex prevents extension by telomerase in 
vitro, consistent with a function for the a-P 
complex in the regulation of telomere length 
(30). (Note that we have not found an S. pombe 
or human counterpart to the p subunit by ho- 
mology searching.) In Saccharomyces cerevi- 
siae the single-stranded telomeric DNA binding 
protein Cdcl3 recruits telomerase to the chro- 
mosome end via interactions with the telomer- 
ase component Estlp (9). Sequence alignments 
of Cdcl3p with Potlp and ciliate telomere pro- 
teins failed to detect obvious similarities. How- 
ever, Cdcl3p may nevertheless belong to the 
same family of proteins, because OB (oligonu- 
cleotide/oligosaccharide binding) folds, which 
are seen in the crystal structure of the Oxytricha 
a-p-DNA complex and are presumably present 
in Potlp (Fig. lB), are identified reliably only 
by structural analysis and not by sequence ho- 
mology (31). It will hence be important to 
probe for interactions between Potlp and telo- 
merase in S. pombe and human cells and to 
determine whether these proteins fulfill analo- 
gous functions to Cdcl3p. 

It now appears that at least in mammalian 
cells, telomeres may exist in at least three in- 
terconvertible states: as t-loops, Potlp-bound, 
and engaged with telomerase (32). Although 
these different states could correlate with par- 
ticular stages of the cell cycle, they need not be 
mutually exclusive. As indicated above, Potlp 
may be involved in actively recruiting telomer- 
ase. Alternatively or in addition, the 3' end of 
telomeric DNA could be capped by Potlp with- 
in the structure of a t-loop, which would prevent 
the chromosome end from being used as a 
primer for conventional DNA synthesis (33). 
Now that a key protein that binds at the chro- 
mosome end appears conserved across widely 
diverged eukaryotes, it will be an interesting 
challenge to determine how it contributes to the 
various structures and functions of the chromo- 
some end. 
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Relapse to  Cocaine-Seeking 

After Hippocampal Theta Burst 


Stimulation 
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Treatment efforts for cocaine addiction are hampered by high relapse rates. To 
map brain areas underlying relapse, we used electrical brain stimulation and 
intracranial injection of pharmacological compounds after extinction of cocaine 
self-administration behavior in  rats. Electrical stimulation of the hippocampus 
containing glutamatergic fibers, but not the medial forebrain bundle containing 
dopaminergic fibers, elicited cocaine-seeking behavior dependent on glutamate 
i n  the ventral tegmental area. This suggests a role for glutamatergic neuro- 
transmission in  relapse t o  cocaine abuse. The medial forebrain bundle elec- 
trodes supported intense electrical self-stimulation. These findings suggest a 
dissociation of neural systems subsewing positive reinforcement (self-stimu- 
lation) and incentive motivation (relapse). 

Cocaine addiction is a chronic brain disorder actual relapse. They are correlational, not 
with psychosocial and neurobiological deter- causal, and they take place in laboratory set- 
minants (I). Treatment efforts are hampered tings, not the actual context of the cocaine 
by relapse (2). Imaging techniques have been experience. Complementary approaches to 
applied to study the neural substrates of co- mapping brain areas underlying relapse are 
caine craving (3-6). These studies, although therefore desirable. 

informative, address subjective craving, not Reinstatement of cocaine-seeking behav- 


'THETABURST ELECTRICAL STIMULATION (VSUB) Fig. 1. (A) Effect of VSUB theta 
burst stimulation (arrow) on 

A g l  b reinstatement in an individual rn 

111 


yl 
rat. Upward bars: active lever 

8 I ,  " I l l  I , presses; downward bars: inac- 
8 o 15 30 45 60 tive lever presses. For clarity, 
h z time (min) only the first hour of the- 3-hour session is shown. (0)z Effect of different patterns of 

VSUB electrical stimulation in 
VENTRAL SUBICULUM a group of rats (n = 9). The 

black bars show "active" lever 
* 	 presses (mean C SEM), the -

I 	 white bars "inactive" lever 
presses (mean + SEM). During 
"sham" stimulation, no actual 
stimulation was delivered. 2 
Hz: 2-Hz repetitive stimulation; 
THETA: stimulation in "theta 
burst" rhythm. Asterisk indi-
cates significant difference 
compared with sham and 2-Hz 
groups (*P < 0.00001). There 
were no significant differences 
in inactive lever presses among 
sham, 2-Hz, and theta burst 

SHAM 2Hz THETA treatment groups. 
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