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in some studies to spatial moment distribu- 
tions on faults simply by adjusting them by a 
constant rupture velocity. This procedure 
makes the widespread implicit assumption 
that spatial complexity always manifests it- 
self as complexity in the moment rate hnc-  
tion, and complexity o f  plate boundaries in 
the past have been judged by looking at time 
functions o f  the source process o f  individual 
earthquakes. For this earthquake, such an as- 
sumption would have precluded identifica-
tion o f  the eastward rupture and overestimat- 
ed the length o f  the N-S one. 

The occurrence o f  this large- and high- 
stress drop earthquake shows that large 
stresses can accumulate in an intravlate re- 
gion o f  distributed deformation. The fact that 
there are no large earthquakes to the east o f  
the IFZ suggests that the region o f  present- 
day active seismic deformation is smaller 
than the region o f  distributed deformation 
(Fig. 1 )  accumulated over millions o f  years 
and identified from the long-wavelength 
gravity field (2), a property also seen at the 
western side o f  the region. The region o f  
deformation thus appears to be localizing 
with time onto a narrower N-S  region. 
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The end-Triassic mass extinction is one of the five most catastrophic in  Pha- 
nerozoic Earth history. Here we report carbon isotope evidence of a bronounced 
productivity collapse at  the boundary, coincident with a sudden extinction 
among marine plankton, from stratigraphic sections on the Queen Charlotte 
islands, British Columbia, Canada. his signal is similar t o  (though smaller than) 
the carbon isotope excursions associated wi th  the Permian-Triassic and Cre- 
~ ~ C ~ O U S - T e r t i a r yevents. 

The Triassic-Jurassic (T-J) boundary mass ex- 
tinction, one o f  the five most severe in Phanero- 
zoic history, led to the demise o f  as many as 
80% o f  all living species (1-3). Unanswered 
questions about the extinction concern its dura- 

'Department o f  Earth and Space Sciences, University 
o f  Washington, Seattle, W A  98195, USA. 2Geological 
Survey o f  Canada, Vancouver, British Columbia V6B 
513, Canada. 3Department o f  Geology, Portland State 
University, Portland, OR 97207, USA. 4Department o f  
Oceanography, University o f  Washington, Seattle, 
W A  98195, USA. 

*To w h o m  correspondence should be addressed. 

tion, its seventy, and whether it affected global 
productiv~ty The extinction in manne strata has 
recently been dated at 199 6 + 0 3 mill~onyears 
ago (Ma) by means o f  high-resolution U-Pb 
zlrcon geochronometry ( 4 ) .but it i s  unknown 
whether the extinctions were synchronous on 
land and In the sea, because th~s date seeins 
slightly later than the extlnction dated on land 
(5 )  It has been suggested that the T-J extinc- 
tlon, unlike the Permian-Tnassic (P-T) and Cre- 
taceous-Tertlary (K-T) events, d ~ d  not affect the 
carbon cycle long enough to cause a clear pel- 
turbatlon In 6 '' organic carbon ( 6 ' 'C , ) ( /, ) 
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leading to the conclusion that this mass extinc- 
tion did not significantly affect bioproductivity 
on a global basis or the long-term burial o f  
organic carbon. W e  present here a record o f  a 
rapid and negative excursion in carbon isotopes 
at the top o f  the uppermost stage o f  the Triassic 
and including the T-J boundary, from a strati- 
graphic section that appears relatively unaffect- 
ed by diagenesis. This isotopic anomaly is co- 
incident with a sudden extinction o f  marine 
plankton (Radiolaria) at the paleontologically 
defined T-J boundary. 

W e  studied the uppermost Peril (Triassic: 
Upper Norian) and Sandilands (Triassic-Ju- 
rassic: Rhaetian to Pliensbachian) formations 
at two sites on the Queen Charlotte Islands, 
British Columbia, Canada: Kennecott Point 
(Fig. 1 )  (latitude 53"54'48.4"N, longitude 
133O09'17.8"W) and Kunga Island [a pro- 
posed candidate for the type section o f  the 
T-J boundary ( 7 ) ]  (latitude 52'45'3 1.4"N, 
longitude 13 1°33'36.6" W ) ,  located approxi- 
mately 165 km southeast o f  Kennecott Point. 

The uppermost Peril Formation consists o f  
black calcareous shale and siltstone, whereas 
the overlying Sandilands Formation consists 
o f  laminated, thinly bedded, organic-rich silt- 
stone and black shale interbedded with thick- 
er turbiditic sandstone and tu f f  (8) .  At both 
sections, the T-J boundary is placed, on bio- 
stratigraphic grounds, at the base o f  the Low- 
er Hettangian Canopum merum radiolarian 
zone. which is equivalent to the North Amer- 
ican Psi1oce1.a~assemblage o f  the ammonoid 
standard zonal sequence (9) .  Stratigraphic 
sections at both localities have been correlat- 
ed paleontologically (10).  and the boundary 
at Kunga Island (Fig. 2) lies 6.3 m above a 
tu f f  dated to 199.6 Ma ( 4 ) .  

Bulk samples o f  black shale were collected 
stratigraphically from both sections and ana-
lyzed for organic carbon with mass spectrosco- 
py (11). Total organic carbon (TOC) at both 
sections varies from 1 to 6% for the samples. At 
Kennecott Point (Fig. l ) ,  there is no significant 
correlation between TOC and S'3C,,, (R' = 

Kennecott Point, Queen Charlotte Islands 

Arnmonoids 	 Radiolarian 
Zones 

0 	
% Organic carbon 

Section ysis of bulk samples. 
continues Both 6'3C,,g and TOC 

are separately plotted.Meters 
For S13C,,g, each point 
represents the mean of 

G a duplicate run; error 
bars were computed 

no rad based on the variance 
and reproducibility of 
sample and standards 
on a particular run. The 
T-J boundary is based 
on first occurrences of 
elements of the C. 
merum radiolarian zone. 

3 	 % Organlc Carbon 

0.006). At Kunga Island, however, there is a 
significant correlation (R2 = 0.64). which 
suggests that extensive diagenetic alteration 
o f  these strata may have occurred. 

At both Kennecott Point and Kunga Island, 
a significant turnover o f  radiolarian fossils oc- 
curs at the level o f  the paleontologically defmed 
T-J boundary. In neither section is there any 
discernible lithological change across this inter- 
val. At Kunga Island, more than 60 species o f  
radiolarians disappear across the boundary in- 
terval (12),whereas more than 50 species dis- 
appear in the Kennecott Point section (13).The 
disappearance o f  the Kennecott Point radiolar- 
ians is less prec~sely located, because there is a 
lack o f  radiolanan-bearing concretions over a 
6-m-thick stratigraphic interval in which the 
extinction level must lie. The highest Rhaetian 
(Triassic) ammonoid recovered at Kennecott 
Point, Cl~oristoceras rlzaeticum. was found 
16 m below the boundary, and the lowest Het- 
tangian ammonite, Psiloceras pnci@cum, was 
found 6 m above the boundary. No ammonites 

Fig. 1. Measured strati- 
graphic section from 
Kennecott Point, show- 
ing fossil ranges and re- 
sults from isotopic anal- 

Section covered ' ' ' 
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have been recovered near the boundary interval 
at Kunga Island. 

Bulk samples collected across the boundary 
interval at Kennecott Point yielded a strati-
graphically restricted (<5 m), -2 per mil (%o) 
change in 613C,,, followed by a return to 
values that were slightly more negative than 
those beneath this excursion. Although the 
magnitude of the excursion is not as great as 
that seen at most P-T or K-T boundary sites, 
what stands out about the isotope record that we 
have recovered from the Kennecott Point 
boundary interval is that the absolute values are 
well below the background variation in the rest 
of the section (which spans all of the Rhaetian 
Stage and the upper part of the Norian and 
lower part of the Hettangian stages) and are 
defmed by multiple samples. 

Samples collected from the Kunga Island 
section also show a significant deviation from 
background 6'3C,, values across the T-J 
boundary. Unlike the Kennecott Point results, 
however, the deviation in 613C0,, is positive 
rather than negative and is defmed by a single 
sample. In its positive trend, the Kunga Island 
excursion thus resembles the isotopic record 

from the T-J section at Kendelbach, Austria, 
which has been ascribed to diagenesis (6).Al-
though the positive correlation of percent TOC 
and 613C0,, at Kunga Island suggests that the 
observed isotopic values obtained from there 
may have been compromised by diagenesis, the 
Kennecott Point samples show no such evi- 
dence either from isotopes or lithology (14). 

Although the sudden extinction of radiolar- 
ians at the T-J boundary is the most important 
bioevent in our two studied sections, there is 
also a second event recorded lower in the Ken- 
necott Point section, at the Noriaf iaet ian 
boundary, that is most prominently marked by 
the disappearance of monotid bivalves. The 
extinction of monotid bivalves in the section is 
associated with a gradual change in lithology, 
from massive and bioturbated black calcareous 
mudstone and siltstone with abundant bedding- 
plane concentrations of Monotis spp. in bitumi- 
nous facies of the Peril Formation to thinly 
laminated black shale interbedded with more 
massive turbiditic siltstone and fine sandstone 
composing the Sandilands Formation. This 
lithological change extends over a few tens of 
meters. Ammonoid abundance also decreases 

Kunga Island, Queen Charlotte Islands 

Section continues 

No dataj
.-,--

1 2 3 4 5 
% Organic carbon 

I 
Section continues 

Fig. 2. Measured stratigraphic section of the T-J boundary interval at Kunga Island, showing positive 
correlation of percent TOC and 613C,,,, suggesting diagenesis. The section is composed of massive 
thinly bedded siltstone. Data are presented as in Fig. 1. 

significantly at this level, and their preservation 
changes from entire (but flattened) body fossils 
to impressions of shells with siphuncular struc- 
tures preserved in three dimensions within the 
phragmocone outline. Trace fossil assemblages 
also change here, with an increase in Chorz-
drites on bedding planes in the dark shale fa- 
cies, suggesting increasingly anaerobic bottom 
conditions (8).As shown in Fig. 1. this extinc- 
tion interval is marked by an increase in 6"Corg 
values in two samples, coincident with the d ~ s -  
appearance of monotids. Further sampling is 
needed to ascertain whether this isotopic 
change is significant and correlated with the 
extinction event. 

The pattern of sudden extinction coinci- 
dent with a 613C0,, decrease at the Rhaetian' 
Hettangian (T-J) boundary at Kennecott 
Point is compatible with a sudden biological 
crisis affecting marine productivity. As yet 
there is no reliable means of dating the dura- 
tion of this event in the Queen Charlotte 
Islands sections (although the presence of 
ashes will make such analyses feasible in the 
future). As a rough estimate, however, if the 
Rhaetian Stage duration is taken as 6 million 
years in length (3). and assuming constant 
sedimentation rate at Kennecott Point during 
that time, then the duration of the isotopic 
excursion at the Kennecott Point section 
would be about 500,000 years in length. 
whereas the extinction event itself was likely 
on the order of 50.000 years or eyen less 

Other possibilities that could explain the 
observed pattern in carbon isotopes include a 
decrease in organic carbon burial coincident 
with the biodiversity decline of Radiolaria. 
and/or a rapid recycling of isotopically light 
bottom water caused by a shallowing of the 
water column pycnocline. However, it seems 
a more parsimonious interpretation that a sin- 
gle short-tenn event caused the observed iso- 
topic pattern at the Kennecott Point T-J 
boundary. This pattern exhibits similarity 
with those seen at extinction boundaries such 
as the K-T and P-T. where extraterrestrial 
impact scenarios have been invoked. 
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To test the hypotheses of modern human origin in East Asia, we sampled 12,127 
male individuals from 163 populations and typed for three Y chromosome 
biallelic markers (YAP, M89, and M130). All the individuals carried a mutation 
at one of the three sites. These three mutations (YAP+, M89T, and M130T) 
coalesce to another mutation (M168T), which originated in Africa about 35,000 
to 89,000 years ago. Therefore, the data do not support even a minimal in situ 
hominid contribution in the origin of anatomically modern humans in East Asia. 

The "Out-of-Africa" hypothesis suggests that 
anatomically modem humans originated in 
Africa about 100,000 years ago and then 
spread outward and completely replaced local 
archaic populations outside Africa (1, 2). 
This proposition has been supported by ge- 
netic evidence and archaeological findings 
(3-9). The replacement in Europe was sup- 
ported by recent ancient DNA analyses, 
which ruled out the contribution of Neander- 
thals to modern Europeans (10, 11). Howev- 
er, it has been argued that the abundant hom- 
inid fossils found in China and other regions 
in East Asia (e.g., Peking man and Java man) 
demonstrate continuity, not only in morpho- 
logical characters but also in spatial and tem- 
poial distributions (12-16). In this report, we 
test the competing hypotheses of modem 
Asian human origins using Y chromosome 
polymorphisms. 

We sampled 12,127 male individuals from 
163 populations across Southeast Asia, Oce- 
ania, East Asia, Siberia, and Central Asia and 

typed for three Y chromosome biallelic markers 
(YAP, M89, and M130) (17, 18) (Table 1). 
Being a single-locus multiple-site (i.e., haplo- 
type) system, the Y chromosome is one of the 
most powefil molecular tools for tracing hu- 
man evolutionary history (5, 9, 19-21). In pre- 
vious Y chromosome studies, an extreme geo- 
graphic structure was revealed in global popu- 
lations in which the oldest clade represents 
Afncans and the younger ones represent some 
Afncans and all non-African populations (21). 
One Y chromosome polymorphism (C to T 
mutation) at the M168 locus is shared by all 
non-African populations and was originally de- 
rived from Africa on the basis of a study of 
1062 globally representative male individuals 
(21). The age of M168 was estimated at 44,000 
years (95% confidence interval: 35,000 to 
89,000 years), marking the recent Out-of-Africa 
migrations (21). Under the M168T lineage, 
there are three major derived sublineages de- 
fined by polymorphisms at loci YAP (Ah in- 
sertion) (5), M89 (C to T mutation), and M130 
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(C to T mutation, also called RPS4Y) (Fig. 1) 
(21, 22). Therefore, these three markers can be 
used to test the completeness of the replacement 
of modem humans of African origin in East 
Asia. An observation of a male individual not 
canying one of the three polymorphlsms would 
be indicative of a potential ancient origin and 
could possibly lead to the rejection of such 
completeness. 

Each of the 12,127 samples typed carried 
one of the three polymorphisms (YAP+, 
M89T, or M130T) (Table 1). In other words, 
they all fall into the lineage of M168T that was 
originally derived from Africa. Hence, no an- 
cient non-African Y chromosome was found in 
the extant East Asian populations (P = 5.4 X 

lop6 assuming a frequency of 111000 of local 
contribution in the extant populations), suggest- 
ing an absence of either an independent origin 
or a 1,000,000-year shared global evolution. 
This result indicates that modem humans of 
African origin completely replaced earlier pop- 
ulations in East Asia. 
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