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more cratering events. It is perhaps signifi- 
cant that morphologically similar smooth, 
flat-floored areas of presumably ponded ma- 
terials are seen in some other (noncrater) 
depressions on Eros (Fig. 2). Evidently there 
is an effective process on Eros that separates 
fine-grained materials from coarser regolith. 
Either this same process or another mecha- 
nism is able to transport the fine-grained 
materials over considerable lateral distances 
(16) .  

Some linear features, mostly grooves, pre- 
viously identified in lower resolution images, 
can be found in the high-resolution LAF cov- 
erage as elongated depressions some tens of 
meters in width (Fig. 6). They are subtle 
depressions up to 25 m in depth (measured 
from shadows) with varying widths and 
amounts of asymmetry in profiles. Many 
have v-shaped cross sections indicative of the 
collapse of loose materials. Although some 
have superposed craters, indicating consider- 
able age. other sections have sharp slope 
intersections and well-defined crests that may 
be younger. As with grooves on other bodies 
( 1 7 ) , their ultimate origin may be related to 
fractures in a more solid interior, but their 
surface expressions are controlled by the 
properties of loose materials, which may 
have been disturbed and in effect partially 
refreshed, multiple times while some other 
crater-induced degradation has occurred. 

The LAF images provide evidence that 
Eros has a widespread regolith, typically sev- 
eral tens of meters in thickness. Exceptions 
may occur, especially locally on steep slopes 
(18). Similar indications of thick regoliths on 
small bodies have been deduced from space- 
craft investigations of the tiny moons of 
Mars, Phobos and Deimos (5),and of aster- 
oids 243 Ida (19)and 253 Mathilde (20). 
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During the Near Earth Asteroid Rendezvous (NEAR)-Shoemaker's low-altitude 
flyover of asteroid 433 Eros, observations by the NEAR Laser Rangefinder (NLR) 
have helped to characterize small-scale surface features. On scales from meters 
to hundreds of meters, the surface has a fractal structure with roughness 
dominated by blocks, structural features, and walls of small craters. This fractal 
structure suggests that a single process, possibly impacts, dominates surface 
morphology on these scales. 

The NEAR-Shoemaker mission (1) has mea- 
sured the shape of asteroid 433 Eros from 
orbit with a laser altimeter ( 2 ) ,enabling quan- 
titative assessments of the asteroid's surface 
morphology at scales of hundreds of meters 
to kilometers (3). Previous results from the 
NLR (4)  suggested that Eros IS a consolidat- 
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ed object whose shape is dominated by col- 
lisions. Clustered steep slopes, beyond ex-
pected angles of repose, are present over 
-2% of the surface area (4). During the 
low-altitude flyover of Eros on 26 October 
2000, simultaneous observations with the 
NLR and the multispectral imager (MSI) 
were obtained at a spatial resolution of -1 m. 
which is at least three times the resolution 
achieved previously (5). 

Dunng the flyover, the NLR was operated 
continuously at a 2-Hz pulse repetition frequen- 
cv. The NLR range vrecision is -1 m, and the - .
NLR boresight direction. which is illuminated 
by the laser, is close to the center of the MSI 
image field of view (3. 6-8). As the Wrfacc 
moves past the instrument boresight (owing to 
orbital motion, asteroid rotation, and spacecraft 
maneuvers), the laser spots trace out a track 
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along which the ranges and surface elevations 
are determined. Near the closest approach (4, 
successive laser spots were separated by -3.7 
m center to center, and the spot diameter was 
1.5 m. The spots covered -32% of the area 
within the track, so the altitude profiles were 
well sampled. 

The surface elevations of the typical, 
heavily cratered region of Eros (9, 10) mea-
sured around the closest approach (Fig. l )  can 
be correlated with morphologic evidence for 
downslope motion of loose surface materials 
by measuring the elevation with respect to the 
gravitational potential [geoid (ll)].  The clos-
est approach occurred near a local maximum 
of elevation. The lengths of the two tracks 
were -1.4 and 4 km (12). The average slopes 
along the tracks in the insets to Fig. 1 were 8" 
and 6", which are typical values according to 
the area-weighted distribution of slopes on 
Eros (4, 13). The geopotential at 19"S, 33 1°E 
near the closest approach is -50.33 m2 sP2, 
which is intermediate between the highest 
and lowest values on Eros (-49.45 and 
-61.47 m2 s - ~ ,respectively). 

The track samples a large angular block 
next to a flat-bottomed crater (Fig. 2) near the 
local maximum in elevation. Aside from 
samples on top of blocks, no slopes along the 
track exceed expected angles of repose (4), 
consistent with equilibrium of an unconsoli-
dated surface layer. The block sampled by 
NLR has a height of 7 m and a width of 20 m, 
based on six laser shots. The NLR profile 
may not have sampled the maximum height 
of the block, but it did sample a sunlit portion 
of it (Fig. 2C). The unsampled portion of the 
block did not shadow what was sampled. One 
laser sample was -2 m higher than adjacent 
samples, suggesting that the banded appear-
ance of this block is due to a structural facet 
that is being illuminated by sunlight. 

The crater (Fig. 2) has a flat floor with 
respect to the geopotential, with a change of 
elevation not exceeding 2 m over a 60-m 
length. Similarly, flat floors in other craters in 
this region have been located in MSI images 
(9). The crater shown in Fig. 2 has a depth of 
16 m versus a diameterof 190m and is shallow 
in comparison with similar-sized, fresh lunar 
craters (14) and larger craters on Eros (9). MSI 
images show craters with a broad range of 
degradation states in this region, where subdued 
shallow craters are common. The MSI and 
NLR observations are collectively consistent 
with infilling of flat-floored craters as an im-
portant process. However, no evidence of infill-
ing by downslope movement or ejecta has been 
identified in this region. The flatness of the 
region found by NLR also argues against the 
importance of downslope motion. Another 
shallow crater was transected by NLR, from 
distancesof 625 to 684 m (Fig. 2). The depth of 
this crater was only 5 m for a diameter of 59 m, 
so its depth-to-diameter ratio is small at -0.08, 

although the transect was noncentral. This cra- the slopes (-20") within this crater along the 
ter does not have a flat floor with respect to the track are less than typical angles (28" to 36") of 
geopotential, but this is not surprising because repose for noncohesive materials. 

Fig. 1.Measured range 
to Eros surface along 
the NLR boresight ver-
sus MET as measured 
in seconds from the 
start of flight opera-
tions. A spacecraft 
slew is marked. The 
closest approach to 
surface occurred at 
-147953500 s near 
latitude lgOS, longi-
tude 33I0E at a range 
of 6.4 km to the sur-
face. The earlier inter-
val (MET of 147950878 
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D~slance(m)to 147951358 S)(low-
left inset) shows 

4 0 0 0 I...-i...L..l..r.l.L.L--L-L..L.-A..A-..-...L..L-.L.- +..L-...--.L..,-.A..L..>..L.., 

147949000 147950000 147951000 147952000 147953000 147954000 147955000
geopotential height Mission elapsed tirne(s)versus distance along 
track in meters for the earlier of two intewals discussed,with the start time indicated by an arrow on 
the range profile. The inset at the upper right (METof 147953353to 147953988s) showsthe same for 
the later interval, except that times of images are marked with vertical lines labeled b through x, and 
the step from one linear trend to another between j and m is indicated by two small arrows. In the 
insets, geopotential height is given by the geopotential divided by the local average effective gravity, an 
excellent approximation to height above the geoid for short tracks. An arbitrary reference height is used. 

Distance (rn) 

appear elongated and roughly aligned with the 
(compare shadows of the boulders). 

Fig. 2. Block and flat-bottomed crater. (A) Im-
ages at MET 147953403 to 147953503 s taken 
at points c through g on the NLR track; scale bar 
is a t  the right. (B) Elevation versus distance,with 
points c through g marked. (C) Expanded view of 
the block [white arrow in (A)] detected by the 
NLR. Numerous small positive relief features 

arge block. The sun is to the right in (A) and (C) 
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The 26-m block to the left of the track near 
the center of the flat-bottomed crater is difficult 
to understand. This block is not the projectile 
that fornled the crater ( 1 5 ) .  Blocks of this size 
may represent impact ejecta from craters on 
Eros ( 4 ) .  but if the flat-floored crater fornled 
first and then the block fell in. a secondary 
crater of several times the block diameter would 
have formed ( 1 5 ) .  No such crater is seen. 
whereas other craters of similar size are detect- 
ed in the region, but subsequent degradation 
may have occurred. This block and that shown 
in Fig. 2C have facets oriented roughly upright 
and parallel to a sinuous ridge and groove sys- 
tem to the right of the track in Fig. 2A. More- 
over. numerous positive relief features in Fig. 
2C appear elongated and in a similar orienta- 
tion, as if controlled by planes of weakness in a 
competent substrate. 

Structural features andlor crater rims are 
associated with the step from one linear trend 
to another in the upper right inset to Fig. I .  
according to MSI images (9) .  which reveal 
that the elevation peaks at approximate dis- 
tances of 1900 and 1700 m are ridge crests. 
The depression at a distance of 2000 m is a 
shallow crater. Topography of up to a few 
tens of meters is associated with these fea- 
tures. A relatively boulder-rich area farther 
down the slope shows two elevation features, 
at approximate distances of 3750 and 
3900 In, which are subtle ridges associated 
with -10 m of relief. 

The contributions to surface roughness 
from structural features at various scales and 
from blocks can be quantified by the root 
mean square (rms) height a = ( [ h ( s )  - h ( s  + 
L)]')" >alculated from NLR profiles. where 
h(.v) is the linearly detrended geopotential 
height and height differences are evaluated at 
all pairs of points separated by a baseline L.  
Many surfaces are almost self-affine (16)  
over two or more decades of L. meaning that 

M e a s u r e m e n t  length (m) 

a power-law behavior o = (T,,([. L,,)" applies. 
a normalizing constant u,,.L,, = I m. and the 
Hurst exponent H. For a rough terrestrial a'a 
lava flo\v up to meter scale i1-1. tr,, = 0.15 m 
and H = 0.58. 

One track (Fig. 1 .  lower left inset) is 
analyzed as a \\,hole and as t\vo separate 
segments. with distances of <SO0 and >500 
m. From MSI images ( 4 ) .  the shorter segment 
sampies a broad trough, and the longer seg- 
ment samples a ridge crest. The whole track 
has an almost self-affine structure over scales 
from a few meters to a few hundred meters 
and is rougher than the a'a l a ~ a  (17 )  if ex- 
trapolated to a I -m baseline. The turndown of 
the rnls height at large baselines occurs at 
250 m for the whole track and for the longer 
crest segment and at 128 ni for the shorter 
trough segment. This behavlor reflects the 
size of the largest structural features sampled 
as well as the influence of track length when 
detrended profiles are analyzed. Comparison 
of the trough segment with the crest segment 
In the self-affine regime below 128 m shows 
that the crest is slightly rougher than the 
trough. 

.4nother track (Fig. 1. upper right inset) is 
analyzed in m o  segments: ( i )  segment a to 1, 
with the flat-bottomed crater and the small ridg- 
es, and (ii) segment m to x, with high block 
densities. according to MSI images ( 4 ) .  In ad- 
dition to mls height. which is marked with 
symbols. Fig. 3B gives the 75 and 25O111 quar- 
tiles of the height difference distributions at 
each baseline. The rnls heights are almost equal 
to the 75'!/0 quartile values. The quartile cumes 
parallel the rnls height curves. further support- 
ing the self-affine structure of the surface and 
the difference between the Hurst exponents of 
the hh.0 segments. The block-rich 111to x seg- 
ment is slightly smoother at the smallest base- 
lines but is much smoother at 100-m scales than 
the a to 1 segment with its stn~ctural features. 

M e a s u r e m e n t  leng th  (m)  

Fig. 3. (A) Fractal analysis o f  the  entire track in  the lower le f t  inset t o  Fig. 1 is shown by the solid 
line w i th  triangles; analysis o f  distances <SO0 m (within trough) is shown by the dashed line w i th  
triangles; and analysis o f  distances >500 m (wall  and crest o f  ridge) is shown by the dotted line 
w i t h  diamonds. (B)Analyses o f  the  track in  the upper right inset t o  Fig. 1. MET of 147953353 t o  
147953647 s (points a through I)is shown by the dashed line wi th squares, and the 25 and 75% 
quartiles are shown by dashed lines. MET o f  147953647 t o  147953980 s (points m through x) is 
shown by the dotted line w i th  triangles, and the 25 and 75% quartiles are shown by dotted lines. 

Hence the hvo segments of Fig. 3B are bimilar 
in roughness at scales of a few meters, presurn- 
ably because of the s~milar distributions of 
small blocks, ~vhereas the a to 1 segment is more 
lugged at scales of I 00 m and larger because of 
its structural features. The quartile statist~cs of 
the track in Fig. 3.4 are similar to those of Ftg. 
3B. 

The NLR profile in the upper r~ght  inset to 
Fig. 1 further suggests that the ridge crests are 
rougher than the troughs. This is quantified 
by rlns height differences at 8-ni baselines in 
two cases: near ridge crests and away from 
them ( 1 8 ) .  Roughness measured by rms 
height was 2.1 111 near the ridge crests but 
only 0.7 m away from them. MSI images of 
this region show a profilsion of blocks (9). 
and the greater roughness of the ridge crests 
may result from higher block tiensitiss on 
ridge crests hen compared ~vith troughs. 

The NLR observed a typical region on Eros 
at high spatial resolution, but phenomena such 
as greater roughness near ridge crests may nor 
generalize to other regions or to scales much 
larger than 100 m. Evidence is found for filling 
in of craters to a few tens of meters ( I Y ) .  Moht 
of these craters were accumulated o\.er -. lo'' 
years while Eros was still within the main ai- 
teroid belt ( 4 .  20). This age would impl? an 
average rate of infilling of craters. or resurfac- ' ing. estimated as 10 ' In year 
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Matriarchs As Repositories of 

Social Knowledge in African 


Elephants 

Karen McC~mb,'.~* Cynthia Moss,' Sarah M. D ~ r a n t , ~  

Lucy Baker,',' Soila Sayialel' 

Despite widespread interest in the evolution of social intelligence, little is 
known about how wild animals acquire and store information about social 
companions or whether individuals possessing enhanced social knowledge de- 
rive biological fitness benefits. ~ s i n ~ ~ ~ l a ~ b a c k e x ~ e r i m e n t son African elephants 
(Loxodonta africana), we demonstrated that the possession of enhanced dis- 
criminatory abilities by the oldest individual in a group can influence the social 
knowledge of the group as a whole. These superior abilities for social discrim- 
ination may result in higher per capita reproductive success for female groups 
led by older individuals. Our findings imply that the removal of older, more 
experienced individuals, which are often targets for hunters because of their 
large size, could have serious consequences for endangered populations of 
advanced social mammals such as elephants and whales. 

Although there is considerable interest in the live in complex fission-hsion societies (5-7), 
evolution of social intelligence (I-4),we still individuals may encounter hundreds of others 
know little about how wild animals gain and during their daily ranging patterns, and time 
store information about social companions or intervals between repeated exposures to the 
whether the possession of superior social same individuals may be extremely long. Under 
knowledge enhances fitness. When mammals these circumstances, the problem of distin- 
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