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Two Functional Channels from 

Primary Visual Cortex to  Dorsal 


Visual Cortical Areas 

N. Harumi Yabuta, Atomu Sawatari,* Edward M. Callaway? 

Relationships between the M and P retino-geniculo-cortical visual pathways and 
"dorsal" visual areas were investigated by measuring the sources of local 
excitatory input to individual neurons in layer 46 of primary visual cortex. We 
found that contributions of the M and P pathways to layer 46 neurons are 
dependent on cell type. Spiny stellate neurons receive strong M input through 
layer 4Ca and no significant P input through layer 4CP. In contrast, pyramidal 
neurons in layer 46 receive strong input from both layers 4Ca and 4CP. These 
observations, along with evidence that direct input from layer 46 to area MT 
arises predominantly from spiny stellates, suggest that these different cell types 
constitute two functionally specialized subsystems. 

The primate visual system is characterized by 
dozens of distinct cortical areas, each thought 
to be specialized for the functional analysis of 
different aspects of the visual environment 
(1-3). These areas can be divided into a 
"dorsal" stream specialized for the analysis of 
spatial relations and a "ventral" stream spe- 
cialized for object recognition. The function- 
al differences between these areas are be-
lieved to arise in part because of differences 
in contributions from parallel, functionally 
specialized magnocellular (M) and parvocel- 
lular (P) pathways that originate in the retina 
and terminate in separate layers of primary 
visual cortex (V1)-layers 4Ca and 4CP, 
respectively (2-7). Layer 4C neurons in turn 
connect to neurons in more superficial layers 
of V1 that provide the output to "higher" 
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dorsal and ventral areas. Specifically, ventral 
stream areas receive inputs directly or indi- 
rectly from layer 213 of V1, whereas dorsal 
areas receive their input from layer 4B. 

Local circuits in V1 generate two func- 
tionally and anatomically distinct channels, 
"blobs" and "interblobs," contributing to ven- 
tral visual areas (2-7). Thus, for the ventral 
stream, the relationships of M and P path- 
ways to extrastriate areas can be inferred 
largely from anatomical studies of the con- 
nectivity from layer 4C to blobs versus inter- 
blobs in layer 213 (8-10). 

In layer 4B, neurons projecting to differ- 
ent dorsal visual areas or modules (V2 thick 
stripes, V3, and MT) are spatially intermin- 
gled. Thus, anatomical observations of V1 
circuitry do not clearly reveal the connection- 
al relationships between M and P pathways 
and the cortical areas that receive layer 4B 
input (11, 12). Neurons in layer 4B that 
project to different cortical areas are morpho- 
logically distinct. In the macaque monkey, 
direct input to area MT (V5) comes primarily 
from spiny stellate neurons (13), whereas 
areas V2 and V3 also receive input from 
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pyramidal neurons (14-16). Thus, it is pos- 
sible to study the different contributions of 
the M and ~ - ~ a t h w a ~ s  to layer 4B-recipient 
visual areas by using scanning laser photo- 
stimulation to identify the sources of func- 
tional input to morphologically identified cell 
types in layer 4B (11, 17-20). 

We used scanning laser photostimulation 
and whole-cell voltage-clamp recordings in 
living brain slices to identify the locations of 
neurons providing excitatory input to layer 
4B neurons in macaque monkey primary vi- 
sual cortex (21). Excitatory postsynaptic cur- 
rents (EPSCs) evoked in the recorded cell 
after photostimulation are indicative of direct 
monosynaptic connections from neurons near 
the stimulation site to the recorded cell. 
Polysynaptic responses mediated by second- 
ary neurons far from the stimulation site are 
ruled out because such secondary neurons do 
not fire action potentials (APs) under the 
stimulation conditions used (20, 21). 

Photostimulation and intracellular record- 
ing, along with subsequent anatomical and 
physiological analyses (22), yielded complete 
excitatory input maps for 14 layer 4B pyra- 
midal neurons, 4 spiny stellates, and 5 inhib-
itory neurons. Figure 1 illustrates excitatory 
input maps to two pyramidal neurons (Fig. 1, 
A and C), one spiny stellate neuron (Fig. lB), 
and one inhibitory neuron (Fig. ID). All four 
neurons received strong excitatory input from 
layer 4Ca. Layer 4CP provided strong input 
to the pyramidal neurons but not to the spiny 
stellate or inhibitory neuron. These character- 
istics of the excitatory input patterns were 
typical of the populations for each cell type. 

To quantitatively compare input strength 
across layers for each cell, we calculated the 
proportion of the excitatory input [estimated 
evoked input (EEI) (22)] to each cell from 
each layer by expressing the average value 
from each layer as a percentage of the sum 
from all four layers, 4Ca, 4CP, 5, and 6. 
These values are shown for all cells in our 
sample in Table 1. We also calculated the 
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statistical significance of measured responses 
from stimulation sites in each layer by com- 
paring the measured EPSCs after stimulation 
with spontaneous EPSCs. When the distribu- 
tions of sums of the peak amplitudes of 
EPSCs for stimulation trials in a given layer 
were significantly greater than the same mea- 
sures from control trials (P < 0.05, Mann- 
Whitney U test), the layer was considered to 
provide significant, detectable input to the 
cell (see Table 1). 

Figure 2A plots the percentage of cells of 
each type (pyramidal, spiny stellate, and in- 
hibitory) that received significant input from 
each layer. Every cell except one inhibitory 
neuron received significant input from layer 
4Ca (23). Input from other layers was more 
variable and for layers 4CP and 5 depended 
strongly on cell type. Twelve of 14 pyramidal 
cells (86%) received significant input from 
layer 4CP, whereas 4CP input was detected 
for none of four spiny stellate neurons (pro- 
portions differ significantly; P = 0.005, Fish- 
er exact test). Significant layer 4CP input was 

also detected for two of five inhibitory neu- 
rons, but this input was much weaker than 
input to pyramidal neurons (Table 1, see 
further below). Layer 5 input was also detect- 
ed more commonly for pyramidal neurons 
(14 of 14 cells) than for spiny stellate (2 of 4) 
or inhibitory (3 of 5) cells. About half of the 
cells received significant input from layer 6, 
regardless of cell type. 

Figure 2B plots the average percentage of 
EEI from each layer for each cell type. For all 
cell types, the strongest input was from layer 
4Ca. For spiny stellate cells, the percentage 
of EEI from layer 4Ca was somewhat greater 
(68%) than for pyramidal (52%) or inhibitory 
neurons (53%) (no significant differences). 
Only pyramidal cells received substantial in- 
put from layer 4CP. Input from layer 5 was 
moderate for all cell types, and layer 6 input 
was relatively weak. 

To more directly estimate the relative con- 
tributions of the M and P pathways to each 
cell type, we compared responses after stim- 
ulation in the M-recipient layer 4Ca with 

Fig. 1. Laminar excitatory input to  layer 48 neurons. Pyramidal neurons receive strong excitatory 
input from both layers 4Ca and 4CP (A and C), whereas spiny stellate (B) and inhibitory neurons 
(D) receive input from layer 4Ca but not 4CP. Colored maps indicating patterns of excitatory input 
to  each neuron are linear interpolations of the EEI (22) values measured after photostimulation at 
discrete sites. Colored vertical scale bars indicate the corresponding EEI values for input maps to  the 
left and right. To the right of each input map are example voltage-clamp recordings made while 
stimulating presynaptic regions (indicated by asterisks) in layer 4Ca (top traces) or layer 4CP 
(bottom traces). Short dashes above each recording show the onset of photostimulation. Horizontal 
lines crossing the input maps represent the anatomical laminar borders. Anatomical reconstructions 
of dendritic (black) and axonal arbors (gray) are superimposed over the input maps. Scale bars apply 
t o  all panels. 

those after stimulation in the P-recipient layer 
4CP. For each cell, the mean EEI for layer 
4Ca was compared with 4CP. We calculated 
a magnocellular dominance index (MDI) (I I ,  
24) by dividing the layer 4Ca EEI by the sum 
of the EEIs for layers 4Ca and 4CP. Values 
for MDI ranged from 0.56, or roughly equal 
input from layers 4Ca and 4CP, to 1.0- 
receiving exclusively 4Ca input (Table 1). 
All four spiny stellate neurons in the sample 
had MDIs greater than 0.9 with a mean of 
0.96, indicating 24-fold stronger input from 
layer 4Ca than 4CP. Inhibitory neurons were 
also dominated by layer 4Ca input (mean 
MDI = 0.91). In contrast, pyramidal neurons 
had significantly lower MDIs (mean MDI = 
0.70; P < 0.00001 versus spiny stellate; P < 
0.001 versus inhibitory cells) covering a 
broad range from 0.56 to 0.91 (from balanc,ed 
to about ninefold stronger 4Ca input). The 
mean value for pyramidal cells corresponds 
to about twofold stronger input from layer 
4Ca than from 4CP. 

The differences in P input from layer 4CP 
to spiny stellate versus pyramidal neurons 
suggest that there are corresponding differ- 
ences in their functional roles in vivo. Layer 
4B pyramidal neurons can benefit more di- 

A ** Pyramidal 
B Spiny Stellate 

Inhibitory 

20 

4Ca 4Cp 5 6 

Fig. 2. Histograms showing the percentages of 
neurons receiving significant excitato input 
from each layer (A) and the mean 7kSEM) 
percentage of evoked input from each layer (B) 
for each cell type. (A) All pyramidal and spiny 
stellate neurons and nearly all inhibitory neu- 
rons receive significant input from layer 4Ca. 
But layer 4CP provides significant input t o  a 
higher percentage of pyramidal neurons than 
spiny stellate neurons (*, P = 0.005). A higher 
percentage of pyramidal neurons also receive 
significant layer 5 input compared with spiny 
stellate (**, P = 0.04) or inhibitory neurons 
(not significant). (B) The percentage of evoked 
excitatory input from layer 4Ca is greater than 
from any other layer for all cell types. Layers 
4Ca. 5, and 6 each provide similar percentages 
of the excitatory input t o  each cell type. But 
layer 4C$ provides a significantly higher per- 
centage of the input t o  pyramidal neurons than 
t o  either spin stellate or inhibitory neurons (*, 
P < 0.00001~ 
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rectly from information carried in the P path- 
way than can spiny stellates. But what infor- 
mation is likely to be conveyed? The P path- 
way is characterized by small, color-oppo- 
nent receptive fields, whereas the M pathway 
has larger, achromatic receptive fields (4-7). 
In these respects, the receptive fields of layer 
4B neurons, the majority of which are pyra- 
midal, bear little resemblance to LGN P cells. 
Layer 4B neurons tend to have large achro- 
matic receptive fields (4-7). The 4B cells 
differ from both M and P cells, however, in 
that they are selective for orientation, direc- 
tion, and binocular disparity (4-7). The P 
pathway carries information that is potential- 
ly useful for the generation of any of these 
properties. For example, chromatic contrast 
detected by P cells might contribute to mo- 
tion detection under low luminance contrast 
conditions (when M pathway activity is low) 
(25). Lesion studies suggest an important 
contribution of the P pathway to stereopsis 
(7, 26, 27), and cortical areas receiving layer 
4B input have large percentages of disparity 
tuned neurons (4-7). These observations 
raise the possibility that the P pathway might 
contribute to disparity tuning of layer 4B 
pyramids, particularly at high spatial frequen- 
cies. Regardless of the functional contribu- 
tions of the P pathway to layer 4B pyramidal 
neurons, a more definitive answer could be 
obtained by directly comparing the visual 
responses of pyramidal versus spiny stellate 
neurons or neurons antidromically activated 
from MT (e.g., 28). 

Anatomical considerations indicate that 
input from layer 4CP onto layer 4B pyrami- 
dal neurons is likely to be predominantly onto 
apical dendrites (9, 10). Although the func- 
tional significance of this configuration is 
unknown, we note that the decreased strength 
of input from layer 4CP relative to 4Ca 
results from a 22% reduction in EPSC ampli- 
tude as well as a 38% reduction in EPSC 
number (29). The differential localization of 
M versus P input onto pyramidal neuron's 
dendrites also raises the possibility of selec- 
tive interactions with other components of the 
cortical network, such as layer-specific inhib- 
itory connections (30). 

The differences in P pathway contribu- 
tions to layer 4B spiny stellates and pyramids 
are correlated with differences in the extra- 
striate areas targeted by each cell type. Area 
MT receives the majority of its area V1 input 
from layer 4B spiny stellates (13), whereas 
area V3 and V2 thick stripes receive mostly 
pyramidal cell input (14-16). But V3 and V2 
thick stripes also supply input to MT, provid- 
ing an indirect route of influence for the P 
pathway (2-7). These differences suggest 
that the quality of the direct input from V1 to 
MT might be degraded if it were integrated 
with the P pathway. 

The direct versus indirect input paths may 
be related to the functional heterogeneity of 
area MT. MT has multiple functional colum- 
nar organizations (31-34), and functionally 
distinct compartments have unique anatomi- 
cal relationships to higher cortical areas re- 

Table 1. Laminar excitatory input for all 23 Layer 4B neurons. Each row represents data from a single 
neuron. The first column identifies each neuron by its morphology as pyramidal, spiny stellate, or 
inhibitory (types A, B, and C) (23). The next four columns indicate the percentage of  the excitatory input 
(based on EEI) (22) from layers 4Ca, 4CP, 5, and 6, respectively, and whether the layer provided 
statistically significant input (values not  in parentheses) or not  (values in  parentheses). The last column 
indicates the magnocellular dominance index (MDI, see text) for each cell. 

Morphology 4Ca 4cP 5 6 MDI 

Pyramidal 53.6 19.9 17.9 8.6 0.73 
Pyramidal 31.1 23.6 32.6 12.6 0.57 
Pyramidal 48.8 19.6 25.6 6.0 0.71 
Pyramidal 48.4 16.0 26.4 9.1 0.75 
Pyramidal 45.3 32.8 14.4 7.5 0.58 
Pyramidal 
Pyramidal 
Pyramidal 
Pyramidal 
Pyramidal 
Pyramidal 
Pyramidal 
Pyramidal 
Pyramidal 
Spiny stellate 
Spiny stellate 
Spiny stellate 
Spiny Stellate 
lnhibitory (A) 
lnhibitory (C) 
lnhibitory (B) 
lnhibitory (B) 
lnhibitory (A) 

ceiving input from MT (33). These observa- 
tions suggest that the direct, M pathway- 
specific input from V1 to MT (through spiny 
stellates) is likely to target different function- 
al columns than the P-influenced pathways 
(pyramids) from V2 and V3. Combined func- 
tional (2-deoxyglucose) and anterograde an- 
atomical labeling (e.g., 33) from V1, V2, and 
V3 to MT would allow direct observation of 
any such relationships. For example, direct 
spiny stellate input from area V1 may con- 
nect preferentially to a particular columnar 
system that would be degraded by the P 
pathway, whereas other systems receive P- 
influenced input from pyramids through V2 
or V3. 
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