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Staphylococcus aureus is a major cause of severe infection in humans and ye t  
is carried without symptoms by a large proportion of t he  population. We used 
multilocus sequence typing t o  characterize isolates of 5. aureus recovered from 
asymptomatic nasal carriage and from episodes of severe disease within a 
defined population. We identified a number of frequently carried genotypes 
t ha t  were disproportionately common as causes of disease, even taking into 
account their relative abundance among carriage isolates. The existence of 
these ecologically abundant hypervirulent clones suggests tha t  factors pro- 
moting the  ecological fitness of this important pathogen also increase its 
virulence. 

Stuph,v/oc.occlrs ourells is one of the most 
important bacterial pathogens of humans. 
The continuing burden of community- and 
hospital-acquired S. ~~~r l . e~ t . sdisease. includ- 
ing serious endovascular. wound. bone. and 
joint infections (1. 3). is a major public 
health concern. This concern is heightened 
by tlie increased pre\alence of antibiotic- 
resistant strains such as methicillin-resis-
tant S. ~ ~ ~ r r e ~ t s(MRSA) and glycopeptide- 
i~lsensitiveS. a~ri .e~rs(GISA) (3) .  Although 
up to 301?/a of the population of the United 
Kingdom carry S. ~1~rre~1.sin their nostrils 
without symptoms. the annual reported in- 
cidence of bacterem~a is less than 0.0240 
( 4 ) .  Here, we  address the question of 
nhether all S. a~rreus  are eq~lally Lirulent. 
and infection is purely opportunistic. or 
whether inlasive disease is primarily 
caused by a subset of particularly L irulent 
genotypes unrepresentattLe of the carriage 
population as a whole. 
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For se\eral  pathogens that are carried 
asymptomatically, ~t has been shown that 
certain clones responsible for cases of in- 
vasi\ e disease may also be abundant in tlie 
carriage population (5 .  6) .  Howeler.  in tlie 
absence of a representati~e population 
framenork,  ~t is not possible to deduce 
\\lietlier these clones are atyp~cally ~ i r u -  
lent. or whetl~er the apparent association 
between specific clones and disease s i m p l ~  
reflects a l i~gher  rate of dissemination with- 
in the carriage population. To place isolates 
recovered fro111 in\ asi\ e S. a~ri .e~rsdisease 
w~th in  tlie broader context of the species as 
a wl~ole ,  we compared 61 bacterial isolates 
fro111 patients with serious community-
acquired 111vasi\e disease n i th  179 isolates 
recovered from the nostrils of healthy indi- 
\ iduals li\ lng in the same community. \ ire 
also studied isolates from 94 contempora- 
neous cases of hospital-acquired disease 
occurring in hospitals serving the study 
population. representing a different and 
cli~lically important epidemiological set-
ting. All isolates were collected within Ox- 
fordshire between 1997 and 1998 during a 
prospecti\e case-control study to define 
host and bacterial factors associated with 
endemic invasive S, a~rrelr.c disease ( 7 ) .  

We used mult~locus sequence typing 
(MLST) to compare the isolates (8) .  Alleles 
at se\ en unlinked housekeeping loci are iden- 
tified by sequencing -350-base pair internal 
fragments of the genes (9 ,  10). and the se- 
quence type (ST)  of an isolate is defined by 
the alleles at the seven loci. There is an 
a\erage of 22.3 alleles per locus; hence. 
MLST could potentially resohe > 1 billion 

STs. A clone 1s defined as a set of isolatcs 
identical at all se\en loci. 

The 333 ~solates belo~lged to 187 STs: 26 
STs were represented by more than one iso- 
late (11). The carriage isolates \\ere signiti- 
cantly more diverse than the disease lsolates 
(13). Forty-eight percent (29 6 I )  of coniniu- 
nity-acquired disease isolates belonged to just 
five STs. a degree of clonality consistent 14 1tI1 
the findlngs of a previous large stud) of 
disease isolates conducted using n~ul t~locus  
enzyme electrophoresis (13).  Lvllereas the 
fi \e most common carrtage STs account for 
just 13O10 (25 179) of the carriage isolate pop- 
ulation. Thus. in the comniunit). ~solatcs 
causing dtsease are not drawn randonil) from 
the carriage population. 

Most of the isolates fall into clusters of 
closely related STs, or clonal complexes. 
and it is likely that isolates In each of these 
clusters ha \ e  descended from a single an-
cestral genotype. To  explore this possibili- 
t ~ .\ ~ eused an algorithm that first defines 
clonal complexes as groups in which each 
tsolate is identical to at least one other 
isolate at f i \ e  or more of the seven loci ( 14) 
(Fig.  I ) .  111 each of the 12 major clonal 
complexes. we ha \ e  Identified what we 
believe to be the "ancestral genotype." as-
signed as the ST differing from the highest 
number of other STs within the coniple\ at 
on11 one locus. The ancestral genotype also 
corresponded to the largest clone in the 
clonal complex in I I out of 12 cases. pro- 
viding independent support for these as-
signments (15 ) .  After identifying putatlLe 
ancestral genotypes. "single-locus \ ari-
ants" (SL\.s)  were identified. These are 
assumed to be direct descendents of anccs- 
tral genotypes, ha\ ing undergone chaliges 
at a single locus, either by point mutation 
or recombination, but ha\ ing remained 
identical to the ancestral genotype at tlie 
other six loci (16 .  i 7) .  ;I cotnparlson of the 
frequencies of Lariant alleles within SL\'s 
14 ith their predicted ancestral counterparts 
provides further strong support for the an- 
cestral assignments (18 ) .  In summary. a 
clonal complex is a set of genot)pe\ de-
rived in the recent past from a common 
ancestor. Clonal ancestors. and direct de- 
scendents of these ancestors, can be iden- 
tified with some confidence wit111n each 
clonal complex. 

\ i ' ~ th  t \ \o  nitno1 exceptions J I I  clonal 
complexes contained ~sola tes  r eco~e red  
from co~~imunity-acquired disease. nosoco- 
mial disease. and asymptomatic carriage. 
Thus. In\ asi\ eness is not a propert? of a 
few rare genotypes \zit11 ~~nusua l lyhigh 
L irulence. and preL ious obser\ attons that 
part~cular pathogenic clones are comt~ionly 
ca r r~ed  (5 ,  6 )  can be extended to the bac- 
terial population as a whole. Clones that are 
1110st L irulent within the community ha \  e 
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also become colnmon causes o f  disease 
within hospitals, in many cases having ac- 

tion may also change loci neighboring the more likely to have arisen by reconlbina- 
MLST genes. Evidence o f  an association tion than those recovered from invasive 
between recombination and loss o f  viru- disease ( P  < 0.001) ( I S ) .  It is interesting 
lence is apparent in the data; SLVs  recov- that this loss o f  virulence was much more 
ered from asympton~atic carriage were closely associated with reconlbination at 

quired resistance to n~ultiple drugs in re- 
sponse to the hospital environment. Both 
methicillin-susceptible and M R S A  isolates 
that cause hospital-acquired infections typ- 

Table 1. Distribution of disease-causing and nasal carriage isolates within clonal complexes (see Fig. 1). 
A 4 by 2 Fisher's exact test comparing the distribution within the ancestral clones, single-locus variants, 
double-locus variants, and satellite strains of community-acquired disease with the distribution in nasal 
carriage isolates is highly significant (P < 0.0001). However, there is no statistical difference between 
isolates recovered from community- and hospital-acquired disease (P = 0.86). 

ically have ancestral genotypes, and there 
is also evidence for a similar trend in G I S A  
isolates ( 1  9). 

However, the crucial observation (Table 
I )  is that a significantly higher proportion 
o f  the disease isolates had an ancestral 
genotype [ I  141155 (74%),  compared with 
391179 (22%) in the carriage sample, odds 
ratio for disease 10 (95% confidence inter- 
vals or Cls  5.5 to Is)]. Thus, even after 
taking into account their ecological abun- 

Disease isolates 

Position within Odds ratio (95% CI) for 
Nasal carriage Community- Hospital- disease, relative to clonal complex isolates acquired acquired ancestral clones* 

[n (%)I In (%)I In (%)I 

Ancestral clone 39 (22) 45 (74) 69 (73) 1 .OO 
Single-locus variant 68 (38) 9 (1 5) 18 (19) 0.1 1 (0.05 to 0.29) 
Double-locus variant 31 (17) 4 (6) 3 (3) 0.1 1 (0.03 to 0.38) 
Satellite? 16 (9) 0 (0) l ( 1 )  0.00 
Singleton (not within 25 (14) 3 (5) 3 (3) 0.10 (0.03 to 0.41) 

a clonal complex) 

dance, isolates with ancestral genotypes 
(ancestral clones) remain disproportionate- 
ly associated with disease. Furthermore, as 
ancestral clones have diversified by  point 
mutation and reco~nbination to for111 clonal 
complexes, there appears to have been an *This analysis includes only community-acquired disease and nasal carriage isolates, as these are epidemiologically 

directly comparable; hospital-acquired disease isolates are excluded. +A satellite is  any isolate that is  a member of 
a clonal complex, but is not a member of an ancestral clone or a single or double-locus variant (these exclude the strains 
within the three minor clonal complexes shown in Fig. 1 in which it is not possible to assign an ancestral clone; these 
are included in "singletons"). 

associated loss o f  virulence. Such an ef fect  
is more likely to be the result o f  recombi- 
nation than point mutation, as recombina- 

Fig. 1. Diagram of 
clonal complexes. 
Each number repre- 
sents an MLST se- 
quence type (ST). 
Where an ST is repre- 
sented by multiple 
isolates, the number 
of isolates with that 
ST are shown in pa- 
rentheses. Green 
numbers denote nasal 
carriage isolates, red 
numbers, communi- 
ty-acquired invasive 
disease isolates, and 
blue numbers, hospi- 
tal-acquired disease ... 
isolates. No inferenc- 
es are made concern- f 
ing the relations be- i 
tween clonal com- i82 
plexes. The central f 
circle of each clonal i 
complex contains the '=.. 
ancestral clone of ., .... 
each clonal complex. 
Single-locus variants 
(SLVs) of an ancestral 
clone lie within the 
next (solid line) con- 
centric circle, and 
double-locus variants 
within the outer (dot- 

Singletons: 

121 
........... 

ted line) circle. A solid 
straight line between 
two ?TS denotes a single-locus difference between them, a dashed straight clones and associated clonal variants were treated as primary ancestral 
line, a double-locus difierence. Three pairs of related STs where the ance&al clones in the analysis and were assigned in rank order 'a~cordin~ to  the 
genotype cannot be predicted are also shown. Singletons are isolates pos- number of SLVs they define (for further details see the BURST readme file 
sessing STs that differ from those of all other genotypes at >2 loci. In two at www.mlst.net/BURST/BURSTREADME.htm). The clonal complexes are 
of the clonal complexes, some SLVs were assigned as secondary ancestral named according t o  the ST of the primary ancestral genotype, but with the 
clones because they differed by a single locus from at least two other prefix "CC" (for clonal complex). Isolates of ST1 (MSSA) and ST36 (EMRSA- 
genotypes that had not already been assigned as SLVs. Secondary ancestral 16) are being sequenced at the Sanger Centre (23). 
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avcC, tpi, or ptu, than with recombination 
at the other four loci, indicating that there 
may be virulence factors closely linked to 
these loci. 

Why should the founding genotypes of 
clonal complexes be the most virulent. and 
why do clonal complexes exist at all? The 
presence of clones is often interpreted as 
reflecting low rates of recombination, but 
this is unlikely to be the case in S. uureus as 
we have shown that an allele is approxi- 
mately eight times more likely to change by 
recombination than by point mutation (18). 
Alternatively. it is possible that ancestral 
genotypes carry a strong selective advan- 
tage, such that they spread sufficiently 
quickly to outrun the diversifying effects of 
recombination to become an observable 
clone (20. 21). 

If ancestral clones are both ecologically 
successful and disproportionately more likely 
to cause invasive disease, there may be a 
causal relation between fitness and virulence. 
In support of this. nasal carriage isolates with 
genotypes identical to those of invasive dis- 
ease isolates were more likely to be recovered 
from both nostrils than those with genotypes 
unique to the carriage population (95% and 
7096, respectively; P = 0.002). Similarly, 
carriage isolates within ancestral clones were 
more likely to colonize both nostrils than 
those not belonging to an ancestral clone 
(90% versus 71%, P = 0.01). These obser- 
vations suggest that isolates corresponding to 
a virulent genotype and those belonging to 
ancestral clones are more successful coloniz- 
ers than other genotypes. 

Within clonal complexes the odds ratio 
for disease between ancestral clones and 
their putative descendants is 9.4 (95% CI, 
5.0 to 17.6; P < 0.0001); that for coloni- 
zation of both nostrils is 3.7 (1.1 to 12.5, 
P = 0.02). We speculate that greater viru- 
lence and greater propensity for coloniza- 
tion are pleiotropic effects of the same 
genetic change, and that. as ancestral 
clones diversify by point mutation and re- 
combination to form clonal complexes, 
there is an associated loss of virulence and 
ecological fitness. As differential coloniza- 
tion of one or both nostrils is only an 
indirect indication of fitness, loss of fitness 
with clonal diversification cannot be dem- 
onstrated directly from the data. 

As invasive disease is relatively very 
rare and unlikely to contribute to transmis- 
sion to new hosts, enhanced virulence itself 
is unlikely to explain the ecological success 
of ancestral clones. An alternative explana- 
tion is that genetic factors promoting ag- 
gressive colonization also cause localized 
tissue damage, providing an increased like- 
lihood of access to the blood stream and. 
hence, invasivc disease. Such a link has 
been drawn between attachment factors 

(fimbriae) in Escherickiu coli and urinary 
tract infection (22). 

We conclude that clonal complexes arise in 
the natural staphylococcal population despite 
high rates of recombination, probably because 
the founding genotypes of these complexes car- 
ry a strong selective advantage. These founding 
clones are initially highly virulent: however, as 
the clones diversify (predominantly via recom- 
bination), the ability to cause invasive disease 
declines rapidly. This analysis highlights the 
importance when studying commonly carried 
bacterial pathogens of placing disease isolates 
in the context of the epidemiologically relevant 
caniage population. In the case of S. aurcza. the 
results suggest that hypenimlent clones are 
abundant in the bacterial carrlage population 
and that S aureus is not solely an opportunistic 
pathogen. 
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