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Mitral cells (MCs) in the olfactory bulb (OB) respond to odors with slow 
temporal firing patterns. The representation of each odor by activity patterns 
across the MC population thus changes continuously throughout a stimulus, in 
an odor-specific manner. In the zebrafish OB, we found that this distributed 
temporal patterning progressively reduced the similarity between ensemble 
representations of related odors, thereby making each odor's representation 
more specific over time. The tuning of individual MCs was not sharpened during 
this process. Hence, the individual responses of MCs did not become more 
specific, but the odor-coding MC assemblies changed such that their overlap 
decreased. This optimization of ensemble representations did not occur among 
olfactory afferents but resulted from OB circuit dynamics. Time can therefore 
gradually optimize stimulus representations in a sensory network. 

Individual MCs (and their functional equiva- 
lents in invertebrates) respond to overlapping 
sets of odors (1-14). Stimulus information is 
thus represented combinatorially by patterns 
of activity across many neurons (15, 16). 
MCs also display odor-evoked temporal fir- 
ing patterns. Besides fast oscillatory synchro- 
nization (10, 13, 14, 1619) ,  MC responses 
exhibit pronounced slow temporal patterning 
on a time scale of hundreds of milliseconds 
(1-10, 13, 14, 20, 21). Consequently, odor- 
evoked population activity patterns are not 
stationary but change over the course of a 
stimulus. 

We chose to study this process in ze-
brafish, because its OB contains relatively 
few MCs (350 to 650) (22) and because 
substantial information exists about natural 
odor stimuli (23). Individual zebrafish MC 
responses were recorded in a nose-attached 
brain explant using intracellular or loose-
patch extracellular techniques (24). Record- 
ings were made throughout the amino acid- 
sensitive ventro-lateral subregion of the OB 
(25, 26). Zebrafish MCs are morphologically 
heterogeneous and possess multiple dendritic 
tufts, probably associated with different glo- 
meruli (Fig. 1A) (10). The average soma 
diameter was 10 2 3 p,m (n = 12 Lucifer 
Yellow fills). Responses to individual odors 
differed across MCs (Fig. lB), and response 
patterns of individual MCs differed across 
odors (Fig. 1, C and F). As described for 

California Institute of Technology, Division of Biology, 
MC 139-74, Pasadena, CA 91125, USA. 

*Present address: Max-Planck-Institute for Medical Re- 
search, Jahnstrasse 29, D-69120 Heidelberg, Germany. 
?To whom correspondence should be addressed. E-
mail: laurentg@caltech.edu 

other species (10, 13, 14, 16-19), odor stim- 
ulation also elicited a local field potential 
(LFP) oscillation (20 to 30 Hz) (Fig. 1C). 
Transient odor-evoked oscillatory activity 
was seen also in subthreshold MC activity 
(Fig. 1B) and in MC coherence calculated 
from paired MC recordings (n = 27) (27). 
During the oscillation, MC spikes occurred 
preferentially during the falling phase of the 
LFP waveform (Fig. 1, C and D) (average 
phase angle, 84" 2 92"). Highest firing rates 
occurred early during an odor response; the 
average population firing rate reached a peak 
after -500 ms (Fig. 1E). The development of 
LFP oscillations lagged behind that of the 
population firing rate (Fig. 1E). 

Sixteen L-amino acids (10 ILM each) were 
chosen as odor stimuli (25), because they 
represent a substantial subset of a relevant 
natural odor class (23) and because among 
them are both chemically similar (e.g., Ala 
and Ser) and dissimilar (e.g., Ala and Lys) 
molecules. Responses to the 16-odor panel 
were recorded from each one of 50 MCs. 
Individual MCs generally responded to sev- 
eral amino acids (Fig. 1, C and F). These 
responses were temporally modulated in an 
odor-related manner, often comprising suc-
cessive excitatory and inhibitory phases (Fig. 
1, B and F). The tuning of a MC (i.e., its 
differential responses to a set of odors, mea- 
sured as odor-induced firing rates) is there- 
fore not stationary but a function of time. 
Figure 2A shows the responses over time of 
the 50 MCs to the 16 amino acids. Tuning 
profiles (rows in each color plot) changed 
over time, becoming progressively more dif- 
ferent from the initial profile. The similarity 
(correlation) of each tuning profile to the 
initial one decreased steeply for -800 ms and 

more slowly thereafter (Fig. 2B, blue curve). 
Late tuning profiles were not simply sharp- 
ened versions of the initial ones (Fig. 2A). ~- , 

Indeed, the sharpness of tuning, assessed both 
by half-width and sparseness measures (28), 
did not change significantly over time (Fig. 2, 
C and D). 

To examine the functional consequences of 
this temporal patterning, we considered two 
factors. First, because individual MC responses 
are not highly specific, precise odor information 
must be encoded by activity pattems across 
many units. Therefore, response specificity 
should be analyzed not from single cells but 
from assemblies of neurons. We analyzed re- 
sponses across 50 MCs as pattems, using mul- 
tivariate techniques. Second, odor identification 
by a behaving animal has to involve the dis- 
crimination between one (experienced) and 
several other (memorized) representations. The 
format of ensemble odor representations may 
be adapted for this task. Therefore, we exam- 
ined whether slow temporal patterning enhanc- 
es the discriminability of odor representations 
by measuring the similarity between population 
activity patterns evoked by multiple odors as a 
h c t i o n  of time. The representation of each 
odor was described by a 50-dimensional vector 
constructed from the firing rates of the 50 MCs 
over a 400-ms window. The development of 
activity pattems over time was analyzed by 
"sliding" this analysis window over the stimu- 
lus duration (2.4 s). 

Because odor responses of individual 
MCs are not stationary (Figs. 1, B and F, and 
2, A and B), activity patterns across the pop- 
ulation of MCs change over time in a stimu- 
lus-specific manner. In Fig. 3A, the firing 
rates of 49 MCs, arranged in a 7 by 7 grid, are 
color-coded and shown for different epochs 
of the response to one odor. MCs were arbi- 
trarily arranged in the grid so that, at stimulus 
onset, firing rates decrease from the center 
out. Over the course of the response, activity 
across the MC population changed, as shown 
by the dispersion of active pixels. The activ- 
ity pattern became progressively more differ- 
ent from the initial one. Figure 3E (blue 
curve) quantifies this trend for all MCs and 
odors. Activity patterns changed most pro- 
foundly during the first -1 s of the response. 
The sparseness of these activity patterns re- 
mained constant (Fig. 3F), indicating that this 
trend was not toward smaller or larger assem- 
blies. This is consistent with the stable tuning 
width of individual MCs (Fig. 2, C and D) 
and indicates that the change of activity pat- 
terns over time does not reflect their pruning, 
e.g., by suppression of weak responses. Rath- 
er, activity is dynamically redistributed 
across the MC population: as some MCs 
cease firing, others replace them, such that 
the overall number of active neurons remains 
approximately constant. 

Figure 3B (left panel, 200 ms) shows the 
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painvise similarities between activity patterns 
at the beginning of the response for all odors. 
Each pixel in this 16 by 16 matrix depicts the 
correlation between two odor representations. 
Clusters of high correlations are evident 
along the identity diagonal, whereas regions 
away from the diagonal are associated with 
low correlations. Intermediate correlation co-
efficients are rare. At response onset, one 
observes groups of odors whose representa-
tions are similar to each other, but dissimilar 
to those of odors from other groups. Odors 
within the same similarity group turn out to 
have related chemical structures (25). As MC 
activity evolves, however, clusters of high 
correlations and regions of low correlations 
disappear, and correlation coefficients con-
verge toward intermediate values. The pro-
gressive change of activity patterns with time 
causes a decorrelation of related odor repre-
sentations, making each pattern more odor-
specific. 

This finding was confirmed by other anal-
ysis techniques. The representation of each 
odor is described as a point in a 50-dimen-
sional coding space in which each axis rep-

resents the activity (firing rate) of one MC. 
The presence of well-separated odor groups 
at stimulus onset implies that the representa-
tions of odors within the same group are close 
to each other in this coding space but distant 
from those of other odors. Thus, the repre-
sentations of related odors form clusters (29). 
To visualize this clustering, we reduced the 
dimensionality to three using principal com-
ponent (PC) analysis (30). Clusters of odor 
representations, seen initially, disappear as 
the response proceeds (Fig. 3C). We also 
used factor analysis (31), which extracts ele-
mentary activity patterns (factors) corre-
sponding to cluster centers. The factor load-
ings plotted in Fig. 3D are a measure of how 
well each odor representation is associated 
with a single cluster. At the beginning of a 
response, most odors are dominated by high 
loadings of single factors, indicating the pres-
ence of distinct clusters to which individual 
odor representations can be assigned. Subse-
quently, however, clusters dissolve, which is 
evident from the progressive loss of single-
factor dominance. 

We quantified clustering of odor represen-

tations as a function of time by two indepen-
dent measures (CI,,, and CI,,,,,) (32). Both 
measures decreased significantly for the first 
-800 ms of the response (Fig. 3G) [one-way 
analysis of variance (ANOVA), both P < 
0.0011, indicating the disappearance of clus-
ters. Lastly, we tested whether the disappear-
ance of clusters was not simply due to a 
decrease in the reliability of MC firing with 
response time. Figure 3H shows that the trial-
to-trial variability slightly decreases, rather 
than increases, over time. Hence, the disso-
lution of representation clusters cannot be 
explained by late response patterns being less 
reliable (33). Odor-encoding activity patterns 
by MCs are thus reorganized over the first 
-800 ms of a response such that initially 
similar patterns become more distinct with 
time. 

This evolution of activity patterns could 
result from circuit processes in the OB, or it 
could occur already among olfactory receptor 
neurons (ORNs) and be imposed on MCs. 
Therefore, we recorded odor responses of 
ORNs in situ under conditions identical to 
those used for MC recordings (34). Consis-
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power. Inset, raw loose-patch recordingsuperimposedon the LFP, extracted 
from the same trace by filtering (5 to 50 Hz), during an odor response. 
Calibration: 50 ms, 1mV (raw trace) and 0.2 mV (LFP). (E)Time course of 

r n l l l l .  1 " 1 J 1  I . I I H I I I I I I I , I,,.. I I . I I I I1I I  
I, 1, I 111.-.1 8 ,  1 I, ,YIL.I:,,. I 1 ,  -..11,.11, 1 I I 1 1  1 1 1 ,111 I 

1 I l ,,,.ll.il I ,  . I  , 1.10..,11,1~1 1 1 111 ,111 :11~1111  11 I, - I l l \  I I I  

Val 1 Ile 1 Leu I Met 

I I 0 I . l . l l - l l iEl 11111 1 1  I t L l t ,  I I. I I ! L ' I . .  111 $ 1 1 1  1. 
I I I -IPII., 0 8  1 8  111111 1 rns.*t~ i$i. , , I  , , , ~ m ~ . , , , ~ , ~ , , ,  8 ,  *, !mm,.l,, 0 d ' 1 1 , ~ , : t ! ~ 2 ~ 8 , '  

Z 60 I Arg 1 LYS1 Glu I ASP 

.-
0 1 2 3 4  

Time (s) 

MC population firing rate and LFP power (15- to  40-Hz band). MC and LFP 
data recorded from the same electrodes (loose-patch). Average of mean 
responses of 50 M G  to  16 amino acids (10 p.M). (F) Responses of a MC to 
the panel of 16 amino acids (10 pM). PSTHs display average firing rates in 
successive 100-ms bins from the spike trains shown above (rasters). 
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tent with calcium imaging results (25), ORNs 
usually responded to multiple amino acids. 
They did not, however, display the complex 
temporal response patterns expressed by 
MCs. Rather, ORN responses followed a ste-
reotypical phasic-tonic time course (Fig. 4, A 
and B). Assemblies of active ORNs did not 
change during an odor response (35). Thus, 
tuning profiles of single ORNs (Fig. 2B, 
green curve) and activity patterns across 
ORN assemblies (Fig. 3E, green curve) did 
not change substantially with time. Clusters 
of odor representations observed at response 
onset remained unaffected at the end of the 
odor stimulus (Fig. 4C). Consistent with this, 
clusters of odor representations were ob-
served when patterns were averaged over the 
entire stimulus duration for afferents (25) 
(Fig. 4C) but not for MCs (27). Declustering 
of odor representations therefore occurs first 
in the OB at the level of MCs. Thus, the OB 
transforms constant input patterns into evolv-
ing patterns of output activity. 

Given that the reorganization of activity 

patterns over time reduces the similarity of 
related odor representations, we tested 
whether this process could improve odor 
identification. A test pattern was matched 
against templates for the 16 odors (all formed 
from randomly selected single trial respons-
es) and was assigned to the odor producing 
the most similar pattern. The percentage of 
errors made was determined by iterating the 
procedure at each time point. Indeed, odor 
identification improved dramatically over 
time (Fig. 31), with a time course that paral-
leled the reorganization of odor representa-
tions (Figs. 2B and 3, E and G). 

Slow temporal patterns in odor-evoked 
MC activity reflect a coordinated reorganiza-
tion of odor representations over time by 
which redundancy is reduced and discrim-
inability is enhanced. This optimization oc-
curs at the population level; responses of 
single MCs do not become more specific 
about an odor. The underlying mechanism is 
a redistribution of activity across MCs, rather 
than a gradual selection of the most active 

units. Early in the odor response, representa-
tions of related odors are clustered in coding 
space (29) like those of olfactory afferents 
(25) (Fig. 4C), suggesting that MC responses 
initially follow afferent activity. Subsequent-
ly, however, MC clusters are broken up by 
OB circuit dynamics and representations be-
come more evenly distributed throughout 
coding space, thus occupying that space more 
efficiently. Progressive declustering over 
time might afford both stimulus classification 
(e.g., "aromatic") from representations at re-
sponse onset and fine discrimination (e.g., 
Tyr versus Trp) from later response phases. 
This hypothesis may now be tested in psy-
chophysical experiments. Because MC re-
sponses are shaped by successive excitatory 
and inhibitory phases and because decluster-
ing coincides with the emergence of oscilla-
tory network dynamics, inhibition through 
lateral interneuronal networks must play an 
important role (36). Inhibition does not, how-
ever, act by sharpening the tuning and spar-
sifying activity patterns across them. The 
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Fig. 2. MC odor responses change over time. (A) Tuning profiles of 50 
MCs to  16 amino acid odors as a function of time. Each color plot 
corresponds to  one MC and is organized as indicated in the inset below. 
For each MC, the separated top row depicts the tuning profile during the 
initial 400 ms of the response (centered on 200 ms after stimulus onset). 
Odors are arranged horizontally such that, for each MC, the odor eliciting 
the highest firing rate is in the center, and odor potency decreases to  
either side. Firing rate is color-coded and normalized to  the maximum 
rate observed. The central field of each color plot depicts the change in 
tuning profile over time. The first row in each central field is identical to  

the initial tuning profile shown above it. Subsequent rows show tuning 
profiles during progressively later time windows (400-ms long 100-ms 
increments). The last row is shown separately again at the bottom and 
represents the tuning profile 1 s after that in the top row. (B) Similarity 
(correlation, mean ? SEM) of each MCsIORNs tuning profile to  the initial 
profile as a function of time, averaged over all MCsIORNs. (C and D) MC 
tuning width as a function of time, measured as the half width (C) or 
sparseness (D) of tuning profiles (28).Both measures revealno significant 
change of tuning width (one-way ANOVA: half-width, P = 0.17; sparse-
ness, P = 0.92). 
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Fig. 4. Odor-specific temporal patterning is 
absent from ORN responses. (A) Responses of 
an ORN to the 16 amino acids. The ORN 
responds to multiple stimuli with different 
firing rates, but all responses follow a stereo- " typed phasic-tonic time course. (I) Superim- 
position of all response time courses (PSTHs, 
100-ms bins) exceeding 30 Hz from 22 ORNs. 
To compare PSTH shapes, all responses were 
normalized to the mean firing rate. Gray line 

11111 I are stable throughout the response. Color scale, -0.17 to 1. 
I I I 
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computations performed are distinct from 
well-known transformations of stimulus rep- 
resentations in other sensory systems that use 
sharpening of tuning by lateral inhibition 
(37-40) and sparsification of codes (41, 42). 
The reorganization of odor representations is 
a gradual, relatively slow process (-800 ms) 
allowed by the nature of olfactory processing. 
Olfaction is usually a low-bandwidth sense, 
ill-adapted for rapidly changing stimuli such 
as natural visual scenes or speech (16). Thus, 
time can serve as a computational variable: it 
is used not simply as a means to increase 
accuracy by temporal integration but for the 
evolution of a network toward an increasing- 
ly informative state. The phenomenon de- 
scribed here differs from transformations in 
the early visual system in which stimulus 
representations (by single neurons) are de- 
correlated (whitened), as they pass from one 
relay (retina) to the next (lateral geniculate) 
(43). By contrast, our results describe a trans- 
formation of stimulus representations (by 
neuronal assemblies) within the same circuit 
but over time. Distributed representations re- 
flecting different features of a stimulus can 
therefore occur in the same circuit at different 
epochs of a response. 
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Extracellular loose-patch recordings (n = 237 MCs, 
35 fish. 10.799 odor presentations) were performed 
using long-shank patch pipettes filled with ACSF (9 to 
12 megohms). Once a spike was detected extracel- 
lularly, light suction was applied to establish a low- 
resistance seal. This procedure reliably isolated spikes 
from single neurons and improved the signal-to-noise 
ratio (see inset in Fig. ID). Signals were recorded with 
an Axoclamp 2B amplifier and digitized at 10 kHz. 
Spike times were extracted after off-line high-pass 
filtering at 280 Hz. LFPs were bandpass-filtered be- 
tween 5 and 50 Hz. All filters were non-phase- 
shifting digital filters implemented in Matlab (The 
Mathworks). Odor stimuli consisted of the 16 amino 
acids (Sigma) (Fig. IF), glutamine (Sigma), and a food 
extract (TetraMin). The data set for multivariate 
analysis consisted of all MCs (n = 50) that were fully 
characterized with the 16 amino acid odors as shown 
in Fig. IF. Fish were kept and experiments were 
performed at room temperature. All animal proce- 
dures were approved by the California Institute of 
Technology Animal Care and Use Committee with 
veterinary supervision by the Office of Animal Re- 
search. All values presented are means + SD unless 
noted otherwise. Spike phase angles were calculated 
from the relative spike time between positive and 
negative peaks of the corresponding LFP oscillation 
cycle. LFP power as a function of time was measured 
from unfiltered data. The oscillatory power (15- to 
40-Hz band) was determined from 102-ms windows, 
stepped in 51-ms increments. 

25. R. W. Friedrich, 5. 1. Korsching. Neuron 18. 737 
(1997). 

26. . 1. Neurosci. 18. 9977 (1998). 
27. R. W. Friedrich, C. Laurent, unpublished data. 
28. The half-width of the tuning profile was determined 
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for each MC in each time window by ranking the 16 
odor responses by decreasing firing rate and finding 
the rank at which the firing rate equaled half the 
maximum firing rate. Fractions of ranks were found 
by interpolation. Sparseness (45) was calculated as in 
(41): S = { l  - [(2rnlN)21X(rn21N)])l[l - (IIN)], 
where r, is the response to odor n and N = 16 is the 
total number of odors. S, a measure of the "peaki-
ness" of a distribution, varies between 0 (no tuning; 
flat distribution of responses across odors) and 1 
(sharpest tuning; response to only one stimulus). 

29. Note that "coding space" does not refer to physical 
space but to the abstract space in which each MC 
defines a dimension. A "cluster" denotes a group of 
activity patterns that are similar to each other, i.e., 
neighbors in coding space. It does not necessarily 
imply that the MCs that are active in clustered 
representations are also physically close to each oth-
er in the OB map; this constitutes an interesting but 
different question. 

30. Representations in 50-dimensional space (each di-
mension representing the firing rate of one MC) were 
projected onto the first three PCs, which are orthog-
onal patterns related to eigenvectors.This procedure 
reduces dimensionality while retaining the maximum 
possible fraction of the variance from the original 
data (46). 

31. Factor analysis is a clustering technique that, unlike 
hierarchical clustering, takes into account all pairwise 
pattern relations. It does not make any initial as-
sumptions about cluster composition and has been 
used before to detect clustered odor representations 
(12, 25). Results displayed are the oblique solution 
reference structures from a PC analysis followed by 
varimax rotation and promax transformation (46). 
Other factor analysis techniques gave similar results. 
The number of factors was set to four because this 
appeared adequate from correlation and PC analyses 
(Fig. 3, B and C). Four factors are also an adequate 
number for afferent activity patterns (25). Unlike 
PCs, factors are not orthogonal. 

32. CI,, is a ratio of across- to within-cluster variance. 
Each stimulus was assigned to one of four clusters by 
hierarchical clustering (centroid linkage; other meth-
ods gave similar results). Vectors representing cluster 
centroids were determined by averaging the vectors 
representing cluster members. For each cluster, the 
average within-cluster variance (Var,,,,,,,,, where c is 
the cluster index) was calculated as the mean 
squared Euclidiandistance of cluster members to the 
respective cluster center. The average across-cluster 
variance (Var,,,,,,,,) was computed as the mean 
squared Euclidiandistance of the cluster centers from 
their average. CI,, is then defined as CI,, = 
I,(Var ,,,,,,,, /Var,,fhhhhh)lC,where C = 4 is the num-
ber of clusters. For statistical comparisons, one value 
was derived per odor as Var,,,,,,,,,IVar,,,,, where n is 
the odor index, cn is the corresponding cluster index, 
Var,,,,,,,,, is the squared Euclidian distance from 
cluster center cn to the average of cluster centers, 
and Var,,,, is the squared Euclidian distance of odor 
n from the cluster center cn. 

where n is the odor index, f is the factor index, N = 
16 is the numbers of odors, F = 4 is the number of 
factors, and L is the factor loading. Abs[L,,,/Z,-
abs(L,)]-I,abs(L,)/F is the deviation of the relative 
contribution of each factor loading from the average 
contribution of all loadings on an odor. The square of 
this value is summed over factors and averaged over 
odors. The result is normalized onto the interval (0,l) 
by dividing by the maximum possible value (I,,, = 
0.4375 for four factors). The rationale is that domi-
nance of single factors, indicating clustering, yields a 
high sum of squares, whereas a uniform distribution 
of factor loadings, indicating no clustering, leads to 
CI,,,,,, = 0. CI,, and CI,,,,,, were chosen because 
they are based on different clustering techniques and 
measures of similarity (squared Euclidian distance 
and correlation, respectively). The fact that similar 
results were obtained emphasizes the reliability of 
the results. 

33. Hierarchical clustering was also performed; the re-
sults are contained in index CI,, (32). For time-
dependent analysis, windows of 400 ms were 
stepped in 100-ms increments. Windows of 100 to 
800 ms gave similar results. Times indicated are the 
time points on which analysis windows were cen-
tered. Controls using randomly selected subsets of 
MCs were performed to confirm that the sample size 
was sufficiently large. Results similar to those ob-
tained with the full dataset were obtained with all 
subsets, some of which contained as few as 20 to 30 
MCs. Slow temporal patterning of MC responses was 
observed over a wide concentration range (27), indi-
cating that the evolution of activity patterns is not 
limited to a narrow concentration window. 

34. ORN recordings were performed using the loose-
patch method in the same brain explant used for MC 
recordings (n = 81 ORNs, 12 fish, 3528 odor presen-
tations). The skin overlying the nasal epithelium was 
removed to allow electrode access. The dataset for 
multivariate analysis comprised all 22 ORNs that 
were each stimulated with all 16 amino acids and 
responded at least to one stimulus (10 pM; 3.6 t 1.4 
repetitions of each odor). Because ORNs are scat-
tered in the epithelium, selection of amino acid-
responsive units was more difficult than for MCs. To 
facilitate selection, ORNs were usually pre-tested 
with a mixture of all 16 stimuli. Nine ORNs that did 
not respond to the mixture (not included in multi-
variate analysis) also did not respond to any of the 
components. ORNs always responded in the same 
way to all effective odors; i.e.. if an ORN was excited 
by one odor, i t  was never inhibited by another. It is 

therefore unlikely that the selection procedure 
missed responsive ORNs because excitatory and in-
hibitory component responses canceled each other in 
the mixture. Inhibition was extremely rare (3% of all 
responses). 
Because the phasic-tonic response time course was 
common to all respondingORNs, i t  did not affect the 
composition of activity patterns. Activity patterns 
across ORNs were therefore modulated in intensity, 
but did not change over time. To further assess the 
variability of temporal response patterns, the vari-
ance of peri-stimulus time histogram (PSTH) shapes 
was measured from odor responses that exceeded a 
threshold 130 Hz for ORNs (Fig. 4B), 40 Hz for MCs]. 
PSTHs (bin width, 100 ms) over the stimulus duration 
were normalized by the mean firing rate over the 
simulus duration to extract the shape. The variance 
was calculated as the mean squared deviation from 
the mean of all PSTHs. The mean variance was sig-
nificantly greater for MCs than for ORNs (19.9 i 
42.6 versus 1.7 t- 1.0, respectively; P < 10 Wil-
coxon rank-sum test). 
Inhibitory bulbar interneurons provide the only 
source of inhibition to MCs (10, 47). The inhibition 
observed does not reflect a suppression of afferent 
excitatory drive because 95% of MCs (49150) but 
only 5% of ORNs (1122) were inhibited by at least 
one of the 16 odors. 
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