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Dynamic Optimization of Odor
Representations by Slow
Temporal Patterning of Mitral
Cell Activity

Rainer W. Friedrich* and Gilles Laurent}

Mitral cells (MCs) in the olfactory bulb (OB) respond to odors with slow
temporal firing patterns. The representation of each odor by activity patterns
across the MC population thus changes continuously throughout a stimulus, in
an odor-specific manner. In the zebrafish OB, we found that this distributed
temporal patterning progressively reduced the similarity between ensemble
representations of related odors, thereby making each odor’s representation
more specific over time. The tuning of individual MCs was not sharpened during
this process. Hence, the individual responses of MCs did not become more
specific, but the odor-coding MC assemblies changed such that their overlap
decreased. This optimization of ensemble representations did not occur among
olfactory afferents but resulted from OB circuit dynamics. Time can therefore
gradually optimize stimulus representations in a sensory network.

Individual MCs (and their functional equiva-
lents in invertebrates) respond to overlapping
sets of odors (/-14). Stimulus information is
thus represented combinatorially by patterns
of activity across many neurons (15, 16).
MCs also display odor-evoked temporal fir-
ing patterns. Besides fast oscillatory synchro-
nization (10, 13, 14, 16-19), MC responses
exhibit pronounced slow temporal patterning
on a time scale of hundreds of milliseconds
(1-10, 13, 14, 20, 21). Consequently, odor-
evoked population activity patterns are not
stationary but change over the course of a
stimulus.

We chose to study this process in ze-
brafish, because its OB contains relatively
few MCs (350 to 650) (22) and because
substantial information exists about natural
odor stimuli (23). Individual zebrafish MC
responses were recorded in a nose-attached
brain explant using intracellular or loose-
patch extracellular techniques (24). Record-
ings were made throughout the amino acid—
sensitive ventro-lateral subregion of the OB
(25, 26). Zebrafish MCs are morphologically
heterogeneous and possess multiple dendritic
tufts, probably associated with different glo-
meruli (Fig. 1A) (/0). The average soma
diameter was 10 = 3 pum (n = 12 Lucifer
Yellow fills). Responses to individual odors
differed across MCs (Fig. 1B), and response
patterns of individual MCs differed across
odors (Fig. 1, C and F). As described for
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other species (10, 13, 14, 16-19), odor stim-
ulation also elicited a local field potential
(LFP) oscillation (20 to 30 Hz) (Fig. 1C).
Transient odor-evoked oscillatory activity
was seen also in subthreshold MC activity
(Fig. 1B) and in MC coherence calculated
from paired MC recordings (n = 27) (27).
During the oscillation, MC spikes occurred
preferentially during the falling phase of the
LFP waveform (Fig. 1, C and D) (average
phase angle, 84° *+ 92°). Highest firing rates
occurred early during an odor response; the
average population firing rate reached a peak
after ~500 ms (Fig. 1E). The development of
LFP oscillations lagged behind that of the
population firing rate (Fig. 1E).

Sixteen L-amino acids (10 pM each) were
chosen as odor stimuli (25), because they
represent a substantial subset of a relevant
natural odor class (23) and because among
them are both chemically similar (e.g., Ala
and Ser) and dissimilar (e.g., Ala and Lys)
molecules. Responses to the 16-odor panel
were recorded from each one of 50 MCs.
Individual MCs generally responded to sev-
eral amino acids (Fig. 1, C and F). These
responses were temporally modulated in an
odor-related manner, often comprising suc-
cessive excitatory and inhibitory phases (Fig.
1, B and F). The tuning of a MC (ie., its
differential responses to a set of odors, mea-
sured as odor-induced firing rates) is there-
fore not stationary but a function of time.
Figure 2A shows the responses over time of
the 50 MCs to the 16 amino acids. Tuning
profiles (rows in each color plot) changed
over time, becoming progressively more dif-
ferent from the initial profile. The similarity
(correlation) of each tuning profile to the
initial one decreased steeply for ~800 ms and

more slowly thereafter (Fig. 2B, blue curve).
Late tuning profiles were not simply sharp-
ened versions of the initial ones (Fig. 2A).
Indeed, the sharpness of tuning, assessed both
by half-width and sparseness measures (28),
did not change significantly over time (Fig. 2,
C and D).

To examine the functional consequences of
this temporal patterning, we considered two
factors. First, because individual MC responses
are not highly specific, precise odor information
must be encoded by activity patterns across
many units. Therefore, response specificity
should be analyzed not from single cells but
from assemblies of neurons. We analyzed re-
sponses across 50 MCs as patterns, using mul-
tivariate techniques. Second, odor identification
by a behaving animal has to involve the dis-
crimination between one (experienced) and
several other (memorized) representations. The
format of ensemble odor representations may
be adapted for this task. Therefore, we exam-
ined whether slow temporal patterning enhanc-
es the discriminability of odor representations
by measuring the similarity between population
activity patterns evoked by multiple odors as a
function of time. The representation of each
odor was described by a 50-dimensional vector
constructed from the firing rates of the 50 MCs
over a 400-ms window. The development of
activity patterns over time was analyzed by
“sliding” this analysis window over the stimu-
lus duration (2.4 s).

Because odor responses of individual
MCs are not stationary (Figs. 1, B and F, and
2, A and B), activity patterns across the pop-
ulation of MCs change over time in a stimu-
lus-specific manner. In Fig. 3A, the firing
rates of 49 MCs, arranged in a 7 by 7 grid, are
color-coded and shown for different epochs
of the response to one odor. MCs were arbi-
trarily arranged in the grid so that, at stimulus
onset, firing rates decrease from the center
out. Over the course of the response, activity
across the MC population changed, as shown
by the dispersion of active pixels. The activ-
ity pattern became progressively more differ-
ent from the initial one. Figure 3E (blue
curve) quantifies this trend for all MCs and
odors. Activity patterns changed most pro-
foundly during the first ~1 s of the response.
The sparseness of these activity patterns re-
mained constant (Fig. 3F), indicating that this
trend was not toward smaller or larger assem-
blies. This is consistent with the stable tuning
width of individual MCs (Fig. 2, C and D)
and indicates that the change of activity pat-
terns over time does not reflect their pruning,
e.g., by suppression of weak responses. Rath-
er, activity is dynamically redistributed
across the MC population: as some MCs
cease firing, others replace them, such that
the overall number of active neurons remains
approximately constant.

Figure 3B (left panel, 200 ms) shows the
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pairwise similarities between activity patterns
at the beginning of the response for all odors.
Each pixel in this 16 by 16 matrix depicts the
correlation between two odor representations.
Clusters of high correlations are evident
along the identity diagonal, whereas regions
away from the diagonal are associated with
low correlations. Intermediate correlation co-
efficients are rare. At response onset, one
observes groups of odors whose representa-
tions are similar to each other, but dissimilar
to those of odors from other groups. Odors
within the same similarity group turn out to
have related chemical structures (25). As MC
activity evolves, however, clusters of high
correlations and regions of low correlations
disappear, and correlation coefficients con-
verge toward intermediate values. The pro-
gressive change of activity patterns with time
causes a decorrelation of related odor repre-
sentations, making each pattern more odor-
specific.

This finding was confirmed by other anal-
ysis techniques. The representation of each
odor is described as a point in a 50-dimen-
sional coding space in which each axis rep-
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resents the activity (firing rate) of one MC.
The presence of well-separated odor groups
at stimulus onset implies that the representa-
tions of odors within the same group are close
to each other in this coding space but distant
from those of other odors. Thus, the repre-
sentations of related odors form clusters (29).
To visualize this clustering, we reduced the
dimensionality to three using principal com-
ponent (PC) analysis (30). Clusters of odor
representations, seen initially, disappear as
the response proceeds (Fig. 3C). We also
used factor analysis (3/), which extracts ele-
mentary activity patterns (factors) corre-
sponding to cluster centers. The factor load-
ings plotted in Fig. 3D are a measure of how
well each odor representation is associated
with a single cluster. At the beginning of a
response, most odors are dominated by high
loadings of single factors, indicating the pres-
ence of distinct clusters to which individual
odor representations can be assigned. Subse-
quently, however, clusters dissolve, which is
evident from the progressive loss of single-
factor dominance.

We quantified clustering of odor represen-

lated over repeated stimuli. Zero degrees corresponds to positive peak of

tations as a function of time by two indepen-
dent measures (Cl and Cl, ) (32). Both
measures decreased significantly for the first
~800 ms of the response (Fig. 3G) [one-way
analysis of variance (ANOVA), both P <
0.001], indicating the disappearance of clus-
ters. Lastly, we tested whether the disappear-
ance of clusters was not simply due to a
decrease in the reliability of MC firing with
response time. Figure 3H shows that the trial-
to-trial variability slightly decreases, rather
than increases, over time. Hence, the disso-
lution of representation clusters cannot be
explained by late response patterns being less
reliable (33). Odor-encoding activity patterns
by MCs are thus reorganized over the first
~800 ms of a response such that initially
similar patterns become more distinct with
time.

This evolution of activity patterns could
result from circuit processes in the OB, or it
could occur already among olfactory receptor
neurons (ORNs) and be imposed on MCs.
Therefore, we recorded odor responses of
ORNSs in situ under conditions identical to
those used for MC recordings (34). Consis-
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Fig. 1. MC responses to amino acid odors. (A) Confocal reconstruction of o ot e | .
a zebrafish MC, filled with Lucifer Yellow. Note different dendritic 3 o 1
compartments and the axon. (B) Intracellular recordings of responses
from three MCs to the same odor (Arg + Lys, 100 uM). Note MC-specific I i L
temporal patterning and rhythmic subthreshold activity (*). Calibration: T T
500 ms, 20 mV. Shaded periods indicate odor presentation. (C) Respons- = R e TP I B B T R R
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oscillation cycle. Calibration: 500 ms, 0.4 mV. (D) Spike phase histogram

of all spikes (72,168) from responses of 50 MCs to 16 amino acids during

LFP oscillation (10 wM; 3.1 £ 1 trials with each odor). Oscillatory periods
selected if LFP power (15- to 40-Hz band) exceeded two times the baseline
power. Inset, raw loose-patch recording superimposed on the LFP, extracted
from the same trace by filtering (5 to 50 Hz), during an odor response.
Calibration: 50 ms, 1 mV (raw trace) and 0.2 mV (LFP). (E) Time course of
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MC population firing rate and LFP power (15- to 40-Hz band). MC and LFP
data recorded from the same electrodes (loose-patch). Average of mean
responses of 50 MCs to 16 amino acids (10 uM). (F) Responses of a MC to
the panel of 16 amino acids (10 pM). PSTHs display average firing rates in
successive 100-ms bins from the spike trains shown above (rasters).
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tent with calcium imaging results (25), ORNs
usually responded to multiple amino acids.
They did not, however, display the complex
temporal response patterns expressed by
MCs. Rather, ORN responses followed a ste-
reotypical phasic-tonic time course (Fig. 4, A
and B). Assemblies of active ORNs did not
change during an odor response (35). Thus,
tuning profiles of single ORNs (Fig. 2B,
green curve) and activity patterns across
ORN assemblies (Fig. 3E, green curve) did
not change substantially with time. Clusters
of odor representations observed at response
onset remained unaffected at the end of the
odor stimulus (Fig. 4C). Consistent with this,
clusters of odor representations were ob-
served when patterns were averaged over the
entire stimulus duration for afferents (25)
(Fig. 4C) but not for MCs (27). Declustering
of odor representations therefore occurs first
in the OB at the level of MCs. Thus, the OB
transforms constant input patterns into evolv-
ing patterns of output activity.

Given that the reorganization of activity

T

m

o : Odor #

initial tuning 1 .- 1g B

profile — Mo~ 0.2 s
. 02s 5
change over =
o < l t v ko
12s [
tuning profile —I———3-1.2s g

rate

1 sec later max
H Firing
0

REPORTS

patterns over time reduces the similarity of
related odor representations, we tested
whether this process could improve odor
identification. A test pattern was matched
against templates for the 16 odors (all formed
from randomly selected single trial respons-
es) and was assigned to the odor producing
the most similar pattern. The percentage of
errors made was determined by iterating the
procedure at each time point. Indeed, odor
identification improved dramatically over
time (Fig. 3I), with a time course that paral-
leled the reorganization of odor representa-
tions (Figs. 2B and 3, E and G).

Slow temporal patterns in odor-evoked
MC activity reflect a coordinated reorganiza-
tion of odor representations over time by
which redundancy is reduced and discrim-
inability is enhanced. This optimization oc-
curs at the population level; responses of
single MCs do not become more specific
about an odor. The underlying mechanism is
a redistribution of activity across MCs, rather
than a gradual selection of the most active
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units. Early in the odor response, representa-
tions of related odors are clustered in coding
space (29) like those of olfactory afferents
(25) (Fig. 4C), suggesting that MC responses
initially follow afferent activity. Subsequent-
ly, however, MC clusters are broken up by
OB circuit dynamics and representations be-
come more evenly distributed throughout
coding space, thus occupying that space more
efficiently. Progressive declustering over
time might afford both stimulus classification
(e.g., “aromatic”) from representations at re-
sponse onset and fine discrimination (e.g.,
Tyr versus Trp) from later response phases.
This hypothesis may now be tested in psy-
chophysical experiments. Because MC re-
sponses are shaped by successive excitatory
and inhibitory phases and because decluster-
ing coincides with the emergence of oscilla-
tory network dynamics, inhibition through
lateral interneuronal networks must play an
important role (36). Inhibition does not, how-
ever, act by sharpening the tuning and spar-
sifying activity patterns across them. The
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Fig. 2. MC odor responses change over time. (A) Tuning profiles of 50
MCs to 16 amino acid odors as a function of time. Each color plot
corresponds to one MC and is organized as indicated in the inset below.
For each MC, the separated top row depicts the tuning profile during the
initial 400 ms of the response (centered on 200 ms after stimulus onset).
Odors are arranged horizontally such that, for each MC, the odor eliciting
the highest firing rate is in the center, and odor potency decreases to
either side. Firing rate is color-coded and normalized to the maximum
rate observed. The central field of each color plot depicts the change in
tuning profile over time. The first row in each central field is identical to
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the initial tuning profile shown above it. Subsequent rows show tuning
profiles during progressively later time windows (400-ms long; 100-ms
increments). The last row is shown separately again at the bottom and
represents the tuning profile 1 s after that in the top row. (B) Similarity
(correlation, mean = SEM) of each MCs/ORNSs tuning profile to the initial
profile as a function of time, averaged over all MCs/ORNSs. (C and D) MC
tuning width as a function of time, measured as the half width (C) or
sparseness (D) of tuning profiles (28). Both measures reveal no significant
change of tuning width (one-way ANOVA: half-width, P = 0.17; sparse-
ness, P = 0.92).
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computations performed are distinct from
well-known transformations of stimulus rep-
resentations in other sensory systems that use
sharpening of tuning by lateral inhibition
(37—40) and sparsification of codes (41, 42).
The reorganization of odor representations is
a gradual, relatively slow process (~800 ms)
allowed by the nature of olfactory processing.
Olfaction is usually a low-bandwidth sense,
ill-adapted for rapidly changing stimuli such
as natural visual scenes or speech (/6). Thus,
time can serve as a computational variable: it
is used not simply as a means to increase
accuracy by temporal integration but for the
evolution of a network toward an increasing-
ly informative state. The phenomenon de-
scribed here differs from transformations in
the early visual system in which stimulus
representations (by single neurons) are de-
correlated (whitened), as they pass from one
relay (retina) to the next (lateral geniculate)
(43). By contrast, our results describe a trans-
formation of stimulus representations (by
neuronal assemblies) within the same circuit
but over time. Distributed representations re-
flecting different features of a stimulus can
therefore occur in the same circuit at different
epochs of a response.
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negative peaks of the corresponding LFP oscillation
cycle. LFP power as a function of time was measured
from unfiltered data. The oscillatory power (15- to
40-Hz band) was determined from 102-ms windows,
stepped in 51-ms increments.

R. W. Friedrich, S. I. Korsching, Neuron 18, 737
(1997).

, J. Neurosci. 18, 9977 (1998).

R. W. Friedrich, G. Laurent, unpublished data.

The half-width of the tuning profile was determined
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29.

30.

31.

32.

for each MC in each time window by ranking the 16
odor responses by decreasing firing rate and finding
the rank at which the firing rate equaled half the
maximum firing rate. Fractions of ranks were found
by interpolation. Sparseness (45) was calculated as in
(41): s = {1 = [Er/NZZ(r 2NV - (1/N)],
where r_ is the response to odor n and N = 16 is the
total number of odors. S, a measure of the “peaki-
ness” of a distribution, varies between 0 (no tuning;
flat distribution of responses across odors) and 1
(sharpest tuning; response to only one stimulus).
Note that “coding space” does not refer to physical
space but to the abstract space in which each MC
defines a dimension. A “cluster” denotes a group of
activity patterns that are similar to each other, ie.,
neighbors in coding space. It does not necessarily
imply that the MCs that are active in clustered
representations are also physically close to each oth-
er in the OB map; this constitutes an interesting but
different question.

Representations in 50-dimensional space (each di-
mension representing the firing rate of one MC) were
projected onto the first three PCs, which are orthog-
onal patterns related to eigenvectors. This procedure
reduces dimensionality while retaining the maximum
possible fraction of the variance from the original
data (46).

Factor analysis is a clustering technique that, unlike
hierarchical clustering, takes into account all pairwise
pattern relations. It does not make any initial as-
sumptions about cluster composition and has been
used before to detect clustered odor representations
(72, 25). Results displayed are the oblique solution
reference structures from a PC analysis followed by
varimax rotation and promax transformation (46).
Other factor analysis techniques gave similar results.
The number of factors was set to four because this
appeared adequate from correlation and PC analyses
(Fig. 3, B and C). Four factors are also an adequate
number for afferent activity patterns (25). Unlike
PCs, factors are not orthogonal.

Cl,,c is a ratio of across- to within-cluster variance.
Each stimulus was assigned to one of four clusters by
hierarchical clustering (centroid linkage; other meth-
ods gave similar results). Vectors representing cluster
centroids were determined by averaging the vectors
representing cluster members. For each cluster, the
average within-cluster variance (Var,;... , where cis
the cluster index) was calculated as the mean
squared Euclidian distance of cluster members to the
respective cluster center. The average across-cluster
variance (Var,,.. ) was computed as the mean
squared Euclidian distance of the cluster centers from
their average. Cl,. is then defined as Cl,. =
3 (Var, o5 VAT inin)/C. where C = 4 is the num-
ber of clusters. For statistical comparisons, one value
was derived per odor as Var, .. /Var, . wherenis
the odor index, cn is the corresponding cluster index,
Var, osscn 15 the squared Euclidian distance from
cluster center cn to the average of cluster centers,
and Var, , is the squared Euclidian distance of odor
n from the cluster center cn.

33.
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REPORTS

Cliactor =

> absLa\’
;

Lng B
>, abs(l) F

E Eabs

N F

Imax

where n is the odor index, f is the factor index, N =
16 is the numbers of odors, F = 4 is the number of
factors, and L is the factor loading. Abs[L /Z-
abs(L,)]-2cabs(L,)/F is the deviation of the relative
contribution of each factor loading from the average
contribution of all loadings on an odor. The square of
this value is summed over factors and averaged over
odors. The result is normalized onto the interval (0,1)
by dividing by the maximum possible value (I .. =
0.4375 for four factors). The rationale is that domi-
nance of single factors, indicating clustering, yields a
high sum of squares, whereas a uniform distribution
of factor loadings, indicating no clustering, leads to
Clegeror = 0. Clyc and Cl,.,, were chosen because
they are based on different clustering techniques and
measures of similarity (squared Euclidian distance
and correlation, respectively). The fact that similar
results were obtained emphasizes the reliability of
the results.

Hierarchical clustering was also performed; the re-
sults are contained in index Cl,,. (32). For time-
dependent analysis, windows of 400 ms were
stepped in 100-ms increments. Windows of 100 to
800 ms gave similar results. Times indicated are the
time points on which analysis windows were cen-
tered. Controls using randomly selected subsets of
MCs were performed to confirm that the sample size
was sufficiently large. Results similar to those ob-
tained with the full dataset were obtained with all
subsets, some of which contained as few as 20 to 30
MCs. Slow temporal patterning of MC responses was
observed over a wide concentration range (27), indi-
cating that the evolution of activity patterns is not
limited to a narrow concentration window.

ORN recordings were performed using the loose-
patch method in the same brain explant used for MC
recordings (n = 81 ORNs, 12 fish, 3528 odor presen-
tations). The skin overlying the nasal epithelium was
removed to allow electrode access. The dataset for
multivariate analysis comprised all 22 ORNs that
were each stimulated with all 16 amino acids and
responded at least to one stimulus (10 wM; 3.6 + 1.4
repetitions of each odor). Because ORNs are scat-
tered in the epithelium, selection of amino acid-
responsive units was more difficult than for MCs. To
facilitate selection, ORNs were usually pre-tested
with a mixture of all 16 stimuli. Nine ORNs that did
not respond to the mixture (not included in multi-
variate analysis) also did not respond to any of the
components. ORNs always responded in the same
way to all effective odors; i.e., if an ORN was excited
by one odor, it was never inhibited by another. It is

36.

37.

38.

39.

40.

41,
42.
43,
44,
45,

46.

47.

48.

therefore unlikely that the selection procedure
missed responsive ORNs because excitatory and in-
hibitory component responses canceled each other in
the mixture. Inhibition was extremely rare (3% of all
responses).

. Because the phasic-tonic response time course was

common to all responding ORNS, it did not affect the
composition of activity patterns. Activity patterns
across ORNs were therefore modulated in intensity,
but did not change over time. To further assess the
variability of temporal response patterns, the vari-
ance of peri-stimulus time histogram (PSTH) shapes
was measured from odor responses that exceeded a
threshold [30 Hz for ORNs (Fig. 4B), 40 Hz for MCs].
PSTHs (bin width, 100 ms) over the stimulus duration
were normalized by the mean firing rate over the
simulus duration to extract the shape. The variance
was calculated as the mean squared deviation from
the mean of all PSTHs. The mean variance was sig-
nificantly greater for MCs than for ORNs (199 +
42.6 versus 1.7 * 1.0, respectively; P < 1078, Wil-
coxon rank-sum test).

Inhibitory bulbar interneurons provide the only
source of inhibition to MCs (10, 47). The inhibition
observed does not reflect a suppression of afferent
excitatory drive because 95% of MCs (49/50) but
only 5% of ORNs (1/22) were inhibited by at least
one of the 16 odors.
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