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product. The ability of RNA to provide 
general acid-base catalysis was discovered 
only last year (9,lO) in studies involving 
the hepatitis delta virus ribozyrne (11). ' 

Efficient general acid-base catalysis re- 
quires that the acid-base have a pK, around 
pH 7.0, whereas the adenine base titrates at 
or below pH 3.5. However, it is already 
known that certain RNA structures can 
perturb the pK, of adenine toward a neutral 
pH (12). In addition, as Muth et al. (13) re- 
port on page 947 of this issue, experimen- 
tal analysis of the nucleotides within the 
peptidyl transferase center demonstrates 
that the adenine implicated by the crystal 
structure has an unusual pK, of 7.6. Re- 
markably, two RNAs-identified by in vit- 
ro evolution for their ability to catalyze 
peptidyl transfer (14) or to bind the analog 
of the reaction intermediate (15)-have 
adenines in a local sequence and secondary 
structure similar to that of the critical ade- 
nine in the ribosome. So, this pair of RNAs 
may recapitulate the key feature of the 
rRNA reaction mechanism. 

Of course, general acid-base catalysis can 
easily be provided in the ative site of a pro- 
tein enzyme, which leads to the question: 
Why does nature use RNA catalysis to 

achieve protein synthesis? One argument is 
evolutionary. If, indeed, there was an early 
RNA world where RNA provided both genet- 
ic information and catalytic function, then the 
earliest protein synthesis would have had to 
be catalyzed by RNA. Later, the RNA-only ri- 
bosome/ribozyme may have been embel- 
lished with additional yet, its heart of 
RNA functioned dliciently well that it was 
never replaced by a protein catalyst. But there 
are persuasive chemical arguments as well. 
The substrates of the ribosome are RNAs- 
arninoacylated tRNAs and an mRNA-and 
RNA is particularly well suited for specific 
recognition of other RNAs through formation 
of base pairs, base triples, and other interac- 
tions. Furthermore, RNA is well suited to 
perform very large-scale conformational 
changes, and such movements are required 
for protein synthesis. 

These most recent contributions of Steitz, 
Moore, and colleagues provide a milestone, 
but not the finish line. This one structure 
contains more RNA-RNA and RNA-protein 
interactions than all previous atomic-level 
structures combined, so ribophiles can look 
forward to years of additional analysis. The 
whole ribosome needs to be brought to this 
same atomic level of resolution, and the pro- 

posed reaction mechanism deserves critical 
testing. Finally, the molecular basis of the 
rnRNA translocation step that must occur af- 
ter each peptidyl transfer event remains ob- 
scure. Thus, although the current crystal 
structure provides one beautill frame, we 
still look forward to seeing the entire movie. 
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(such as viscosity, density, and surface ten- 
sion). The starting materials, sometimes The Power of Direct Writing termed ..pa,,9 ..inks:' may consist of 
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irect-write technologies are of in- ma spray, laser particle guidance, matrix- 
creasing importance in materials assisted pulsed-laser evaporation 
processing, enabling, for example, (MAF'LE), laser chemical vapor deposition 

the simplification of printed circuit board (CVD), micropen, ink jet, e-beam, focused 
manufacture at reduced costs (I). In a di- ion beam, and several novel liquid or 
rect-write approach, structures are built di- droplet microdispensing approaches (2-9). 
rectly without the use of masks, allowing One theme common to all techniques is 

combinations of powders, nanopowders, 
flakes, surface coatings, organic precur- 
sors, binders, vehicles, solvents, disper- 
sants, and surfactants. These materials have 
applications as conductors, resistors, and 
dielectrics and are being developed specifi- 
cally for low-temperature deposition 
(<300° to 400°C). They will allow fabrica- 
tion of passive electronic components and 

rapid prototyping. As materials and pro- their dependence on high-quality starting radio frequency devices with-the perfor- 
cessing challenges are being met with in- materials, typically with specially tailored mance of conventional thick film materi- 
creasing success, direct-write techniques 
move toward a wide range of applications. 
Passive electronic components and inter- 
connects have been made by direct-write 
techniques using a variety of materials. In 
a parallel development, direct writing of 
biomaterials is used for tissue engineering 
and array-based biosensors. 

c To optimize different direct-write tech- 
$ niques, electronic materials and approach- 
2 es must be tailored for each processing 
$ method, transfer method, and required 

electronic or other device performance. 
3 Many different approaches exist to direct- 

write or transfer patterned materials, and 
8 each technique has its own merits and 

chemistries and/or rheological properties als, but on low-temperature flexible sub- 
I _ .  , strates, such as plastics, 

. .- -.':. .:. 
. - .;' . . .' . . - paper, and fabrics. The 

. . . . ... desired final electronic 
materials may be silver, 
gold, palladium, and 
copper conductors or 
alloys; polymer thick 
film and ruthenium 
oxide-based resistors; 
and metal titanate- 
based dielectrics. 

Problems arise. how- . - ever, because the fabrica- - - tion of high-quality crys- 
talline materials- 

$ shortcomings. The techniques include plas- Tight packing. This scanning electron micrograph of a fracture cross required for high elec- 
5 section demonstrates the extremely uniform and optimized packing tronic performance of 
$ The author is at the Naml Research Laboratory,Wash- of BaTiO, nanopowders. The individual powder particles have assem- the final material-is 
6 ington, M: 20375, USA. E-mail: chrisey@cctnrLnavy.mil bled to produce a dense dielectric layer. nearly impossible at 
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these processing temperatures (-400°C). The but technologically important, substrates. different viable cells. At the Naval Research 
highest possible packing density for spherical In most cases, individual direct-write Laboratory, patterns of viable Escherichia 
powders is -74% for the facecentered cubic techniques make trade-offs between in- coli bacteria have been transferred onto vari- 
structure and is even lower (-64%) for ran- creasing particle bonding to help the trans- ous substrates with a laser-based forward 
dom close packing (10, 11). This means that fer process and optimizing direct-write transfer technique (Id). We are now in a po- 
there is at least 26% air in the structure. Ac- properties such as resolution or speed. The sition to use these tools to create three-di- 
cording to the logarithmic mixing rule for di- resolution of direct-write lines can be on mensional mesoscopically engineered struc- 
electrics, 26% air reduces the effective di- the micrometer scale, speeds can be greater tures of living cells, proteins, DNA strands, 

than 200 mm/s, and the electronic material and antibodies and to cofabricate electronic 
Cell Particle devices on the same substrate to 

rapidly generate cell-based 
biosensors and bioelectronic in- 
terfaces. This will, for example, 
allow us to probe intercellular 
signaling. These methods repre- 
sent an important advance in 
biomaterial processing and the 
manipulation of natural systems. 

Current progress in many 
direct-write technologies is 
driven by advances in the 
transfer and processing of nov- 

el materials. These technologies 
offer opportunities in manufac- 
turing improved discrete elec- 
tronic devices and rapid proto- 
typing machines with increased 
flexibility, the fabrication of flex- 

spinal cord) was deposited by laser guidance in a hollow-core fiber. Inner di- ible electronics, and the culturing 

ameter of the fiber: 30 ym; cell diameter: -9 pm. Time lapse between im- of abnormal or cancerous cells 

ages: 0.3 s. (A) and (B) illustrate cell viability after guidance with normal ad- (1 7, 18). Future work in this area 
hesion and neurite growth, Image width in (0): -30 pm. [Adapted from (1.4)] will focus on lowering the pro- 

cessing temperature and increas- 
electric constant by almost an order of mag- properties are comparable to those of con- ing the density and particle-particle bond- 
nitude, highlighting the importance of reduc- ventional screen-printed materials. The use ing to improve the electronic properties. 
ing the porosity in transferred materials (12). of electronic materials that have been opti- 

One strategy to overcome this liability, mized for direct-write technologies results References 
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