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We calculate the probability of strong shaking in Istanbul, an urban center of 10 
million people, from the description of earthquakes on the North Anatolian fault 
system in the Marmara Sea during the past 500years and test the resulting catalog 
against the frequency of damage in Istanbul during the preceding millennium. 
Departing from current practice, we include the time-dependent effect of stress 
transferred by the 1999 moment magnitude M = 7.4 lzmit earthquake to faults 
nearer to Istanbul. We find a 62 1 15% probability (one standard deviation) of 
strong shaking during the next 30 years and 32 + 12% during the next decade. 

The 17 August 1999 M = 7.4 Izmit and 12 
November 1999 M = 7.1 Diizce earthquakes 
lulled 18,000 people, destroyed 15,400 build- 
ings, and caused $10 billion to $25 billion in 
damage. But the lzmit event is only the most 
recent in a largely westward progression of - .  . -
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seven large earthquakes along the North Ana- 
tolian fault since 1939. Just northwest of the 
region strongly shaken in 1999 lies Istanbul, a 
rapidly growing city which has been heavily 
damaged by earthquakes 12 times during the 
past 15 centuries. Here, we calculate the vrob- 
gbility of future earthquake shaking in 1s&bul, 
using new concepts of earthquake interaction, 
in which the long-term renewal of stress on 
faults is perturbed by transfer of stress from 
nearby events. 

Stress triggering has been invoked to explain 
the 60-year sequence of earthquakes rupt&ng 
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toward Istanbul (1-3), in which all but one event 
promoted the next (4). Although an earthquake 
drops the average stress on the fault that slipped, 
it also changes the stress elsewhere. The seis- 
micity rate has been observed to rise in regions 
of stress increase and fall where the off-fault 
stress decreases (5, 6). The M = 7.4 Izmit 
earthquake, as well as most background seis- 
micity (7), occurred where the failure stress is 
calculated to have increased by 1 to 2 bars (0.1 
to 0.2 MPa) because of M 2 6.5 earthquakes 
since 1939 (Fig. 1A) (8). The Izmit event, in 
turn, increased the stress beyond the east end of 
the rupture by 1 to 2 bars, where the M = 7.2 
Diizce earthquake struck, and by 0.5 to 5.0 bars 
beyond the west end of the 17 August 1999 
rupture, where a cluster of aftershocks occurred 
(Fig. 1B). The correspondence seen here be- 
tween calculated stress changes and the occur- 
rence of large and small earthquakes, also re- 
ported in (9), strengthens the rationale for incor- 
porating stress transfer into a seismic hazard 
assessment. 

A probabilistic hazard analysis is no better 
than the earthquake catalog on which it is 
based. Global obse~ations support an earth- 
quake renewal process in which the probability 
of a future event grows as the time from the 
previous event increases (10). To calculate such 
a renewal probability, ideally, one wants an 
earthquake catalog containing several large 
events on each fault to deduce earthquake mag- 
nitudes, the mean interevent time of similar 
events, and the elapsed time since the last shock 
on each fault (11) Although such catalogs are 
rarely, if ever, available, Ambraseys and Finkel 
compiled a wealth of earthquake damage de- 
scriptions for events since A.D. 1500 in the 
Marmara Sea region (12-15). We assigned 
modified Mercalli intensities (MMI) to 200 
damage descriptions (1 6), and used the method 
of Bakun and Wentworth (1 7) to infer M and 
epicentral location from MMI through an em- 
pirical attenuation relation (18). We calibrated 
the relation against Marmara Sea events that 
have both intensity and instrumental data (19). 
Uncertainties in earthquake location were ex- 
plicitly calculated from MMI inconsistencies 
and inadequacies. 

Our catalog thus consists of nine M 2 7 
earthquakes in the Marmara Sea region since 
1500. For the six events that occurred before 
instrumental recording began in 1900, we se- 
lected the minimum magnitude falling within 
the 95% confidence bounds at locations asso- 
ciated with faults of sufficient length (20) to 
generate the event (Fig. 2). We estimated rup- 
ture lengths and the mean slip from empirical 
relations on M for continental strike-slip faults 
(21). The locations and geometry of faults in the 
Marmara Sea are under debate; we follow (24, 
which is based on seismic reflection profiles 
(Fig. 2), and find four faults capable of produc- 
ing strong shaking in Istanbul: the Yalova, 
h i t ,  Prince's Islands, and central Marmara 

faults. Our catalog suggests two earthquakes 
on the Izmit fault (occurring in 1719 and 
1999), yielding an interevent time of -280 
years, and three on the Yalova fault (1509, 
17 19, 1894), permitting an estimate of - 190 
years (22). We infer one earthquake (May 
1766) on the Prince's Islands fault and one 
(1509) on the central Marmara fault (Fig. 2). 
For these, we gauge interevent times by di- 
viding the seismic slip estimated from the 
catalog by the global positioning system 
(GPS)-derived slip rate (23, 24), yielding 
interevent times of -210 years for the 

Prince's Islands fault and -540 years for the 
central Marmara fault. Thus, at least two of 
the four faults are likely late in their earth- 
quake cycles. 

One way to validate the catalog magnitudes, 
locations, and segment interevent times is to 
compare the relative abundance of small to 
large shocks through the b-value; another is 
to see if the seismic strain release from the 
catalog is consistent with the measured strain 
accumulation from GPS. The frequency- 
magnitude relation for our catalog yields b = 
1.1 by maximum likelihood (25), close to the 

Preseismic 

Fig. 1. (A) Stress change caused by earthquakes since ' I ~ w .  DIIUWII ale L I I ~  I I I~AI I~IUI I I  LUULUIIIY stress 
changes between 0 and 20 km depth on optimally oriented vertical strike-slip faults (44). The assumed 
friction coefficient is 0.2, as has been found for strike-slip faults with large cumulative slip (45, 46). A 
100-bar deviatoric tectonic stress with compression oriented N55OW (47) is used, under which 
optimally oriented right-lateral faults strike E-W except along the rupture surface. The 1993 to July 
1999 seismicity recorded since installation of IZINET (7) has uniform coverage over the region shown. 
Calculated stress increases are associated with heightened seismicity rates and with the future epicenter 
of the 17 August 1999 lzmit earthquake (indicated by star); sites of decreased stress exhibit low 
seismicity. (B) lzmit aftershocks are associated with stress increases caused by the main rupture [first 
12 days from IZINET (7)], such as the Yalova cluster southeast of "Y," and the occurrence of the 12 
November 1999 Diizce earthquake. Faults: Y, Yalova; P, Prince's Islands; M, Marmara; I, Izmit. 
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global average (26). Over a sufficiently long 
time period, the moment release by earth- 
quakes must balance the moment accurnula- 
tion by elastic strain if aseismic creep is 
negligible. We compared the seismic slip rate 
represented by the catalog (23.5 + 8 mm/ 
year) to the observed slip rate measured by 
GPS across the North Anatolian fault system 
in the Mannara region (22 + 3 &year) 
(quoted uncertainties are one standard devia- 
tion here and elsewhere) (Fig. 3) (27). For 
b - 1, most of the moment is conferred by 
the largest shocks, so the consistency be- 
tween GPS and catalog strain means that the 
size and location of the three M - 7.6 events, 

as well as the number of smaller earthquakes, 
are plausible. 

Perhaps the strongest test of the 500-year 
catalog can be made by calculating the com- 
bined Poisson, or time-independent, probabil- 
ity predicted from the interevent times for the 
three faults we regard as capable of produc- 
ing MMI 2 VIII shaking in Istanbul. This is 
the probability averaged over several earth- 
quake cycles on each fault and yields 29 + 
15% in 30 years. This can be compared to the 
Poisson probability calculated directly from 
the longer record of MMI 2 VIII shaking in 
Istanbul during the preceding -1000 years 
(A.D. 447 to 1508). The older record gives 

Sediments 
- Bedrock Y) 95% confidence 

bounds on epicenter 
min. Lmmmm.m.mm Interpreted 
max. LUIII$IIIIIIIII rupture 

Fig. 2. Large historical earthquakes since 1500. Intensities (dots) were assigned from damage 
descriptions compiled by (72-75). Red dashed contours give the moment magnitude M needed to  
satisfy the observations for a given location (77), because the farther the epicenter is from the 
observations, the larger the M required to  satisfy them. The confidence on location is governed by 
the relative intensities; magnitude is a function of absolute intensities. We assigned earthquakes to  
faults by minimizing M within the 95% confidence region (78, 79). Faults labeled in lower panels: 
I, Izmit; Y, Yalova; P, Prince's Islands; M, Marmara; G, Ganos; NAF, North Anatolia fault. 

Fig. 3. Seismic slip from the 500- 
year-long catalog of Fig. 2 is 
summed in four transects across 
the North Anatolia fault system 
in the Marmara Sea. All known or 
estimated M 2 7 sources are 
included (27). The mean seismic 
strain release rate balances the 
strain accumulation rate ob- 
served from GPS geodesy (24). 
Whether earthquakes in paren- 
theses extend to a given transect 
is uncertain. "1766an is May; 
"1 766b" is August. 

I from catalw II 

b70 - 23 i 8 mdyear from catalog ,300 

the long-term frequency of shaking used in a 
Poisson calculation without knowledge of the 
earthquake locations. At least eight earth- 
quakes (28) caused severe damage in Istanbul 
from A.D. 447 to 1508 (12-14), translating 
into a 20 + 10% 30-year probability, roughly 
comparable to that derived from our catalog. 
Thus, the fault interevent times estimated 
from the 500-year catalog are consistent with 
the independent record of shaking in Istanbul 
during the preceding millennium. 

We combined earthauake renewal and 
stress transfer into the probability calculation 
on the basis that faults with increased stress 
will fail sooner than unperturbed faults. Be- 
cause two of the three faults within 50 krn of 
Istanbul are interpreted to be late in their 
earthquake cycles, the renewal probability is 
higher than the Poisson probability. Addition- 
ally, the permanent probability gain caused by 
stress increase is amplified by a transient gain 
that decays with time. The transient gain is an 
effect of rate- and state-dependent friction 
(29-31), which describes behavior seen in 
laboratory experiments and in natural seis- 

estimated . 

0 ~ " " ' 0 Trigger-to-rupture 20 time 40 (years) 60 

- s - for greater 
;3 Istanbul 

P 
t- ... .- - .-. . . . . 

5 . . . interaction 
L m 

background 

1920 2000 2080 
Starting date of 30-year period 

Fig. 4. (A) Observed and modeled transient re- 
sponse to  stress transfer. The 13 M 2 6.8 North 
Anatolian earthquakes for which the stress at the 
future epicenter was increased by 20.5 ban are 
plotted as a function of time. The earthquake rate 
decays as t-' in a manner identical to aftershocks, 
as predicted by (29-32). (B) Calculated probability 
of a M 2 7 earthquake (equivalent to MMI 2 Vlll 
shaking in greater Istanbul) as a function of time. 
The probability on each of three faults is summed 
(43). The large but decaying probability increase is 
caused by the 17 August 1999 lzmit earthquake. 
"Background tracks the probability from earth- 
quake renewal; "interaction" includes renewal and 
stress transfer. Light blue curve gives the proba- 
bility had the lzmit earthquake not occurred. 
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Table 1. Earthquake probabilities for  faults w i th in  5 0  k m  of  Istanbul beginning May 2000. "Combined" is the probability for the three faults (43). Quoted 
uncertainties are one standard deviation. "Background" refers t o  renewal; "interaction" includes renewal and interaction by  stress transfer. 

30-year (%) 10-year (%) 1-year (%) 
Fault 

Interaction Background Interaction Background Interaction Background 

Yalova 3 3  t 21  
Prince's Islands 35 t 15 
Marmara 13 t 9 
Combined 62 '15 

mic phenomena, such as earthquake se-
quences, clustering, and the occurrence of 
aftershocks. We estimated the duration of 
the transient decay directly from the times 
between triggering and rupturing earth-
quakes on the North Anatolian fault (Fig. 
4A). Because parameter assignments used 
in the calculation are approximate, we per- 
formed a Monte Carlo simulation to ex-
plore the uncertainties (32). The resulting 
probability functions (Fig. 4B) exhibit a 
gradual rise as the mean time since the last 
shock on each fault grows, then a sharp 
jump in August 1999 followed by a decay. 
We find a 62 rt 15% probability of strong 
shaking [MMI 2 VIII; equivalent to a peak 
ground acceleration of 0.34 to 0.65g (33)] 
in greater Istanbul over the next 30 years 
(May 2000 to May 2030), 50 i 13% over 
the next 22 years, and 32 rt 12% over the 
next 10 years (Table 1). Inclusion of renew- 
al doubles the time-averaged probability; 
interaction further increases the probability 
by a factor of 1.3. 

The 12 earthquakes that damaged Istanbul 
during the uast 1500 years attest to a signif- 

A 


icant hazard and fonn the basis for a 30-year 
Poisson, or time-averaged, probability of 15 
to 25%. Because the major faults near Istan- 
bul are likely late in their earthquake cycles 
(with no major shocks since 1894), the re- 
newal probability climbs to 49 ? 15%. We 
calculate that stress changes altered the rate 
of seismicity after the 1999 Izmit earthquake, 
promoting the M = 7.2 Diizce shock and the 
Yalova cluster. Because the 1999 Izmit shock 
is calculated to have similarly increased 
stress on faults beneath the Marmara Sea, the 
interaction-based probability we advocate 
climbs still higher, to 62 i 15%. 
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The potential of cloning depends in part on whether the procedure can reverse 
cellular aging and restore somatic cells to a phenotypically youthful state. Here, 
we report the birth of six healthy cloned calves derived from populations of 
senescent donor somatic cells. Nuclear transfer extended the replicative life- 
span of senescent cells (zero to four population doublings remaining) to greater 
than 90 population doublings. Early population doubling level complementary 
DNA-1 (EPC-1, an age-dependent gene) expression in cells from the cloned 
animals was 3.5- to 5-fold higher than that in cells from age-matched (5 to 10 
months old) controls. Southern blot and flow cytometric analyses indicated that 
the telomeres were also extended beyond those of newborn (<2 weeks old) and 
age-matched control animals. The ability to regenerate animals and cells may 
have important implications for medicine and the study of mammalian aging. 

Questions have been raised as to whether cells 
or organisms created by nuclear transfer will 
undergo premature senescence. Normal somat- 
ic cells display a finite replicative capacity 
when cultured in vitro (1, 2). The germ line 
appears to maintain an immortal phenotype in 
part through expression of the ribonucleopro- 
tein complex telomerase, whlch maintains the 
telomeres at a long length. However, nuclear 
transfer technologies use embryonic, fetal, and 
adult somatic cells that often do not express 
telomerase from a range of mammalian species 
(3-10). A recent report (11) suggests that nu- 
clear transfer may not restore telomeric length 
and that the terminal restriction fragment size 
observed in animals cloned from cells reflects 
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the mortality of the transferred nucleus, which 
could limit the utility of the cloning of replace- 
ment cells and tissue for human transplantation 
(12, 13). 

Wilmut et al. (3) have reported that arrest 
in the Go phase of the cell cycle is required to 
obtain normal development of animals cloned 
from differentiated cells. Replicative senes-
cence is a physiological state distinguishable 
from quiescence achieved by either serum 
starvation or density-dependent inhibition of 
growth of young cells (14-18) and appears to 
involve a block in late G,  near the G,/S 
boundary in the cell cycle (19-21), possibly 
reflecting a DNA checkpoint arrest (22-26). 
Here we investigate whether the production 
of live offspring is possible by nuclear trans- 
fer of late-passage somatic cells and whether 
the epigenetic changes seen in the donor 
cells, such as telomere shortening and loss of 
replicative life-span, are reflected in the re- 
sultant organism. 

A somatic cell strain was derived from a 
45-day-old female bovine fetus (BFF) and 
transfected with a PGK-driven selection cas- 
sette. Cells were selected with (3418 for 10 
days, and five neomycin-resistant colonies 
were isolated and analyzed for stable trans- 
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fection by Southern blotting with a full-
leneth cDNA urobe. One cell strain (CL53) -
was identified as 63% (total nuclei) positive 
for the transgene by fluorescence in situ hy- 
bridization (FISH) analysis and was chosen 
for our nuclear transfer studies. These fibro- 
blast cells, which were negative for cytoker- 
atin and positive for vimentin, were passaged 
until greater than 95% of their life-span was 
completed, and their morphology was consis- 
tent with cells close to the end of their life- 
span (Fig. 1A). 

A more detailed ultrastructural analysis by 
electron microscopy demonstrated that these 
cells exhibited additional features of reulica- 
tive senescence, including prominent and ac- 
tive Golgi apparatus, increased invaginated 
and lobed nuclei, large lysosomal bodies, and 
an increase in cytoplasmic microfibrils as 
compared with the young cells (Fig. 1B) 
(27). In addition, these late-passage cells ex- 
hibited a senescent phenotype in showing a 
reduced capacity to enter S phase (Fig. 1C) 
and a significant increase in the staining of 
senescence-associated P-galactosidase (28, 
29). Furthermore, these cells exhibited a re- 
duction in EPC-1 (early population doubling 
level cDNA-1) (30) mRNA levels as com- 
pared with early-passage bovine BFF cells in 
a manner analogous to the changes observed 
during the aging of WI-38 cells (Fig. ID). 

A total of 1896 bovine oocytes were recon- 
structed by nuclear transfer with senescent 
CL53 cells (4). Eighty-seven blastocysts (5%) 
were identified after a week in culture. The 
majority of the embryos (n = 79) were trans- 
ferred into progestin (SYNCROMATE-B)-syn- 
chronized recipients (2 to 6 years old), and 17 
of the 32 recipients (53%) were pregnant by 
ultrasound 40 days after transfer. One fetus was 
electively removed at week 7 of gestation 
(ACT99-002), whereas nine (29%) remained 
pregnant by 12 weeks of gestation. Two of 
these aborted at days 252 (twins) and 253, and 
one was delivered stillborn at day 278. The 
remaining six recipients continued develop- 
ment to term. The rates of blastocyst formation 
(5%) and early (53%) and term (19%) pregnan- 
cies with senescent CL53 cells were compara- 
ble to those of control embryos produced with 
nonsenescent donor (CL57) cells from early- 
passage cells (5, 45, and 13%, respectively). 

Six calves were delivered by elective cesar- 
ean section (Fig. 2). Genomic analyses con- 
firmed the presence of the transgene in two of 
the animals (CL53-1 and CL53-12), as well as 
in the fetus that was removed electively at day 
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