
(4 mg) was concentrated by vacuum dialysis against 100 
m M  KCI, 100 mM NaCI, 5 mM potassium phosphate (pH 
6.7) (buffer A) t o  a final concentration of 1 to 2 mgiml. 
Tf R was removed and placed on ice, and 20 m l  of trypsin 
(10 mgiml) was added. After 1 hour, TfR was passed 
over a benzamidine Sepharose column, and phenyl- 
methysulfonyl fluoride was added (up t o  1 mM) t o  
inhibit residual trypsin activity. We then passed the TfR 
over a Superdex 200 size-exclusion column equilibrated 
with buffer A t o  remove aggregated protein. 
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4-week period. Crystals were flash frozen by plunging 
into liquid N, or melting propane. The space group is 
P2,2,2,, a = 105.4 A, b = 216.9 A, c = 361.9 A. The 
asymmetric unit contains four Tf R dimers, stacked along 
an 8, screw axis coincident with the crystallographic 2, 
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Microtubule Disassembly by 
ATP-Dependent Oligomerization 

of the AAA Enzyme Katanin 
James J. Hartman and Ronald D. Vale* 

Katanin, a member of the AAA adenosine triphosphatase (ATPase) superfamily, 
uses nucleotide hydrolysis energy to sever and disassemble microtubules. Many 
AAA enzymes disassemble stable protein-protein complexes, but their mechanisms 
are not well understood. A fluorescence resonance energy transfer assay demon- 
strated that the p60 subunit of katanin oligomerized in an adenosine triphosphate 
(ATP)- and microtubule-dependent manner. Oligomerization increased the affinity 
of katanin for microtubules and stimulated its ATPase activity. After hydrolysis of 
ATP, microtubule-bound katanin oligomers disassembled microtubules and then 
dissociated into free katanin monomers. Coupling a nucleotide-dependent oli- 
gomerization cycle to the disassembly of a target protein complex may be a general 
feature of ATP-hydrolyzing AAA domains. 

Microtubules, polymers of a- and P-tubulin 
subunits, form the mitotic spindle and organize 
membranous organelles in interphase cells. To 
accomplish these disparate functions, the mi- 
crotubule cytoskeleton must rapidly reorganize 
into different configurations. Microtubules un- 
dergo spontaneous growth and shrinkage at 
their ends, even at steady state, which is impor- 
tant for the cellular rearrangements of these 
polymers (1, 2). In addition to end dynamics, 
the microtubule wall can be disrupted by the 
seveiing enzyme katanin (3). Potential in vivo 
roles for katanin-mediated microtubule sever- 
ing include releasing microtubules from centro- 
somes (4); depolyrnerizing microtubule minus 
ends in the mitotic spindle as a component of 
poleward flux (5)> and accelerating microtubule 
hmover at the GJM transition of the cell cycle 
by creating unstable microtubule ends (6). 

Katanin is a microtubule-stimulated ATPase? 
and ATP hydrolysis is required for it to sever 
and disassemble stable microtubules (3). Ka- 

tanin is a heterodimer organized into a 60-kD 
enzymatic subunit (p60)> which carries out the 
ATPase and severing reactions, and a targeting 
subunit (p80), which localizes katanin to the 
centrosome (7). The sequence of p60 reveals 
that it belongs to the AAA ATPase superfam- 
ily, members of which share one or two copies 
of a conserved 230-amino acid ATPase do- 
main (8-10). AAA proteins have been impli- 
cated in a myriad of cellular processes as 
diverse as membrane targeting (NSF; VPS4> 
p97), organelle biogenesis (PASlp), proteoly- 
sis (SUGl), and transcriptional regulation 
(TBP1) (11). AAA proteins have been pro- 
posed to act as nucleotide-dependent chaper- 
ones that can disassemble specific protein 
complexes or unfold polypeptides (8). How- 
ever, little is known about how changes in the 
nucleotide state of the AAA"domain are cou- 
pled to the disassembly of theiq protein targets. 

Like the AAA protein NSF (12, 13), p60 
katanin can form 14- to 16-im rings, as shown 
by electron microscopy (7). However, p60 (14) 
and GFP-p60, a chimeric protein composed of 
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partment o f  Cellular and Molecular Pharmacology, 
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USA. glycerol gradients in the presence of ATP, 
*To w h o m  correspondence should be addressed. E-  adenosine diphosphate (ADPI, or adenosine-5'- 
mail: vale@phy.ucsf.edu (y-thio)triphosphate (ATP-y-S) (Fig. 1A) (15). 
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GFP-p60 also migrated as a monomer by gel 
filtration (Stokes radius 66 A). As a control, an 
hTSF AAA domain (D2) migrated at 8S (Fig. 
lA), the size expected for a hexamer of 30-kD 
AAA subunits (12, 13). Therefore, in contrast 
to NSF, p60 does not form stable hexameric 
rings. Rather, the hydrodynamic and electron 
inicroscopy data taken together suggest that 
p60 inonomers and oligomers exist in a revers- 
ible eq~lilibrium and that p60 hexameric lings 
may not be stable to the time and dilution 
effects of sedimentation and gel filtration. 

We examined the dynamics of katanin ring 
formation in solution as well as in the presence 
of its microtubule substrate by using a fluores- 
cence resonance energy transfer (FRET)-based 
assay. To achieve stoichiomekic labeling at a 
defined location on the p60 molecule; we fused 
p60 to either cyan fluorescent protein (CFP) or 

1 6 11 16 2 1 
Fraction number 

450 500 550 600 
Emission wavelength (nm) 

Fig. 1. Oligomerization o f  p60 katanin. (A) 
Hydrodynamic analysis. Sedimentation profile 
of CFP-p6O katanin through 10% t o  35% glyc- 
erol gradients (15) in  the presence o f  2 rnM 
MgATP (closed circles) or MgADP (open circles). 
Both sediment as a single species of about 45. 
CFP-p60E334Q (22), an active site mutant, was 
tested in  the  presence of 2 m M  MgATP (closed 
triangles) and MgADP (open triangles). CFP- 
p60E334Q sediments as a mixture of 4s and 155 
species in  the presence o f  ATP but  as a single 
species of 45 in  the presence o f  ADP. As a 
control for AAA oligomerization, w e  sedi- 
mented an NSF AAA domain (D2) (12) through 
gradients containing 2 m M  MgATP, and the 
sedimentation peak is indicated by an arrow. 
(B) FRET of a 1 : 9  mixture o f  CFP-p60E334Q 
(donor) and YFP-p60E334Q (acceptor) in  the 
presence of 2 rnM MgATP (closed circles) or 2 
m M  MgADP (open circles) (22). FRET is indicat- 
ed by the decreased emission at 480 n m  and 
the increased emission at 535 n m  in the  pres- 
ence of MgATP. The MgADP emission profile is 
identical t o  that  calculated for CFP-p60E334Q 
and YFP-p60E334Q measured separately (74). 

yellow fluorescent protein (YFP) as a donor- 
acceptor pair (16, 17). The half-maximal ener- 
gy transfer distance, R,; for the CFP and YFP 
pair is about 5 nm (IS)? which is similar to the 
intrasubunit distances within the AAA ring (9, 
10). To test this FRET assay, we prepared an 
ATP active site mutant (E334Q) (19) of CFP- 
p60 and YFP-p60, which was designed to block 
nucleotide hydrolysis and hap the enzyme 111 
the ATP-bound state (20). An equivalent muta- 
tion abolishes the ATPase and membrane fu- 
sion activities of NSF (21) and promotes oli- 
gomeiization of VPS4> a single AAA domain 
protein involved in vacuolar targeting (22). As 
expected, p60E334Q had no detectable ATPase 
activity. \?lien we mixed CFP-p60E3"Q and 
Y F P - P ~ O ~ ~ ~ Q  fusion proteins in the presence 
of ADP, no energy transfer occurred and the 
emission of the CFP-YFP nlixture was identical 
to that when the proteins were tested separately 
(14). Ho~vever? in solutions that contained 
ATP? the mixture of C F P P ~ O ~ ~ ~ "  and YFP- 
~ 6 0 ~ ~ ~ ' ' Q  showed a reduced CFP enlission and 
correspondingly enhanced YFP emission, 
which is indicative of FRET (Fig. 1B) (23). 
This result indicates that p60E334Q subunits oli- 
gomerize when they are complexed with ATP. 

To confirm the conclusion from the above 
FRET experiment, we determined the oligo- 
lneric state of C F P - P ~ O ~ ~ ~ " Q  by llydrody- 
namic analysis. In the presence of ATP, CFP- 
~ 6 0 ~ ~ ~ "  sedimented at 4 s  and 15s in glyc- 
erol gradients (Fig. 1A) (15). The 15s  com- 
plex dissociated to 4S monomers when 
incubated with 2 mM ADP. To determine the 
oligomeric state of the 15s  complex, we per- 
formed gel filtration of C F P - P ~ O ~ ~ ~ "  in the 
presence of ATP, which yielded a major peak 
with a Stokes radius of 8.6 nm (24). The 
Stokes radius and sedimentation coefficient 

Table 1. Effect of nucleotides and microtubules on 
CFP-p60-YFP-p60 FRET. MgATP, MgADP, and 
MgATP-y-S were present at 2 mM, and microtu- 
bules were included at 5 y M  where indicated. The 
FRET signal (23) for ADP did not increase at higher 
(20 y M )  microtubule concentrations. FRET values 
are normalized by using the ADP value as 100% 
(1.13 for p60E334Q, 0.46 for p60Wt). The FRET 
signals for the p60E334Q and p6OWt experiments 
cannot be directly compared because they were 
done with slightly different donor/acceptor ratios 
(p60E334Q, 0.13 p M  total; 1:5 ratio of donor CFP 
to acceptor YFP: p60Wt, 0.5 y M  total; 1:2 ratio of 
donor CFP to acceptor YFP). The mean and stan- 
dard deviation of two measurements (p60wt) or 
three measurements (p60E334Q) are shown. 

Protein Nucleotide Microtubules FRET signal 
(% of ADP) 

p60E334Q ADP - 100 i- 1.2 
p60E334Q ATP - 124 + 0.9 
p6OWt ADP - 100 + 0.8 
p6OWt ADP + 102 + 0.2 
p6OWt ATP-y-S - 98 i- 0.1 
p60Wt ATP-y-S + 119 i- 0.2 

predict a inolecular mass of 520 kD, consis- 
tent with C F P - P ~ O ~ ~ ~ ~ Q  forming a hexamer 
of 90-kD subunits in the presence of ATP. 
These results agree with the FRET measure- 
ments? which also showed ATP-dependent 
oligomerization of p60E3"Q. 

We tested microtubules and ATP analogs 
for their ability to promote oligomerization of 
wild-type p60. We used the poorly hydrolyz- 
able nucleotide, ATP-y-S, to mimic the ATP 
state because it inhibits katanin ATPase activity 
(3) and because both ATP and ATP-y-S sup- 
ported similar amounts of FRET in p60E3j3Q 
(14). Little or no energy transfer occurred in the 
absence of microtubules regardless of the nu- 
cleotide present (Table 1). However, we ob- 
served a substantial increase in FRET when we 
incubated p60 with microtubules and ATP-y-S 
but not ADP (Table 1) (23). When p60 was not 
bound to nucleotide (apyrase added), we ob- 
seived a result similar to that with ADP (14). 
Hence, both nucleotide (ATP) and substrate 
(microtubules) cooperate in stimulating oli- 
gomerization of p60. 

To determine the consequences of hexam- 
eric ring formation on the interaction of katanin 
with microtubules, we used a microtubule co- 
sedimentation assay. GFP-p60 bound to inicro- 
tubules with high affinity (K, - 0.9 kM) in the 
presence of ATP-y-S, whereas the affinity was 
reduced to K, - 18 FM in the presence of ADP 
(Fig. 2) (25). High-affinity binding may require 
the microtubule polymer because oligomeric 
C F P - P ~ O ~ ~ ~ ~ Q  did not elute with nlonomeric 
tubulin on gel filtration colunlns (14). We also 
assessed the influence of the AAA domain of 
p60 on microtubule binding. %'hen the AAA 
domain was deleted, the resultant protein 
@60AAAA) (26) still cosedimented with 
microtubules, indicating that the NH,-ternliil~~s 
comprised a microtubule binding domain. Sim- 

Fig. 2. Nucleotide-dependent binding of p60 
katanin t o  rnicrotubules. Cosedimentation o f  
CFP-p60 and rnicrotubules was tested in  the  
presence of 2 m M  MgATP-y-S (closed circles) 
(K, - 0.9 p M )  or MgADP (open circles) (K, - 
1 8  FM) (25). p60AAAA is a truncated p60 that  
lacks the COOH-terminal AAA domain (closed 
triangles) (K, - 6 k M )  (26). Binding o f  this 
protein was no t  affected by nucleotide (14). 
Binding is expressed as the  fraction o f  CFP-p60 
that  cosedimented w i th  microtubules, and the 
best f i t  t o  a hyperbolic curve is shown. 
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ilarly, protein targeting by NSF also involves 
its NH,-terminal domain (27). However, 
p60AAAA binding was nucleotide-insensitive 
(14), and its aftinity was in between GFP-p60 
in its ATP- and ADP-bound states. Thus, the 
AAA domain of p60 affects the binding affinity 
of the adjacent microtubule binding domain, 
and tight binding occurs in nucleotide states 
(ATP or ATP analogs) that stabilize p60 rings. 

Native as well as baculovirus-expressed ka- 
tanin display an unusual microtubule-stimulat- 
ed ATPase reaction in which the activity peaks 
at a microtubule concentration of 2 to 10 yM 
tubulin dimer and then decreases as the micro- 
tubule concentration is hrther increased (7). 
This differs from the expected Michaelis-Men- 
ten hyperbolic stimulation that, for example, is 
typical of microtubule motor proteins (28). One 

FRET 

0- 
0 10 20 30 40 50 

Microtubules (pM) 

120 ATPase 

5 100 .- 
5 .- - 8 80 

5 60 
E '3 40 
I . 20 
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Fig. 3. Effect of microtubules on p60 oligomer- 
ization, ATPase, and microtubule severing activi- 
ties. (A) Oligomerization and ATPase actiGty as a 
function of microtubule concentration. ATPase 
activity (closed circles) (29) and FRET (open cir- 
cles) (23) were measured in a 0.2 pM, 1:s mix- 
ture of CFP-p6O and YFP-p6O. Values have been 
normalized to the percentage of the maximum 
observed FRET or ATPase signal. A curve fit is 
shown for two competing Michaelis-Menten re- 
actions ({(A X [tubulin])l(B + [tubulin])) - {(C X 
Eubulin])/(D + [tubulin])}). (B) Comparison of 
ATPase (hatched bars) (29) and microtubule-dis- 
assembly activity (solid bars) (37) of 0.2 pM p60 
at 5 and 10 pM microtubules. ATPase activity 
begins to decline above about 2 yM microtubules 
for untagged p60 (7) and above about 10 pM 
microtubules for CFP-p60-YFP-p60 (Fig. 3A). We 
used untagged p60 for this assay because micro- 
tubule concentrations > 10 p M  are not compat- 
ible with the fluorescence microtubule disassem- 
bly assay. Activities have been normalized to ac- 
tivity at 5 pM, and error bars indicate standard 
deviation of two measurements. Maximum ac- 
tivity was 1.9 ATP p60-' s-' and 0.04 tubulin 
dimer p60-' s-', yielding a coupling ratio of 
about 50 ATP per tubulin dimer removed from 
the microtubule. 

explanation for this behavior is that ATPase 
activation is driven by hexamer formation and 
the degree of oligomerization is determined by 
a competition between p60-p60 and p60 mono- 
mer-microtubule associations. To test this pos- 
sibility, we determined the FRET and ATPase 
activities of p60 as the microtubule concentra- 
tion was increased (29). Both ATPase activity 
and FRET increased together as the microtu- 
bule concentration was increased and then de- 
clined in a similar manner at higher microtubule 
concentrations (Fig. 3A) (30). In agreement 
with the ATPase measurements, microtubule 
disassembly by katanin was inhibited at a high 
microtubule-to-katanin ratio (Fig. 3B) (31). 
These results indicate that microtubules may 
stimulate the activity of p60 by facilitating p60- 
p60 interactions. Conversely, high concentra- 
tions of microtubules may reduce the ATPase 
and severing activities by preventing p60-p60 
associations through the sequestration of p60 
monomers at discontiguous, low-aftinity bind- 
ing sites on the microtubule. The data in Fig. 3 
also revealed that release of a tubulin subunit 
from the microtubule wall requires the hydro- 
lysis of, on average, about 50 ATP molecules. 
This coupling ratio is similar to that of the 
chaperone GroEL, which hydrolyzes 50 to 150 
ATPs per renaturation of a misfolded protein 
(32). 

The above results suggest a model for how 
katanin disrupts tubulin contacts within a mi- 
crotubule wall (Fig. 4). Katanin-ADP is mono- 
meric, but nucleotide exchange for ATP en- 
hances p60-p60 affinity. Oligomerization is 
most efficient, however, in the presence of its 
protein substrate, which suggests that microtu- 
bules act as a scaffold for promoting oligomer- 
ization. The p60 ring then binds to microtubules 
with high affinity, potentially as a result of 
forming multiple tubulin contacts. Once katanin 
oligomers 'assemble on the microtubule, 
ATPase activity is stimulated. Nucleotide hy- 

Fig. 4. Model for microtubule severing by ka- 
tanin. See text for detail of the mechanism. For 
simplicity, only a single protofilament of the 
microtubule is shown. T, DP, and D represent 
ATP, ADP + Pi, and ADP states, respectively. 
The relatively low affinity of katanin for nucle- 
otide suggests that exchange of ATP for ADP 
would occur rapidly in solution. The conforma- 
tional change is shown to occur with y-phos- 
phate bond cleavage, although this could also 
occur as a result of y-phosphate release. 

drolysis and subsequent phosphate release 
could change the conformation of the katanin 

u 

ring, leading to mechanical strain that destabi- 
lizes tubulin-tubulin contacts (Fig. 4). Consis- 
tent with this idea, large conformational chang- 
es have been observed for the NSF ring in its 
ATP and ADP states (12). A concerted confor- 
mational change also occurs for the chaperone 
GroEL, which binds misfolded polypeptides at 
multiple sites within its seven-membered ring 
and undergoes large interdomain motions that 
strain the bound polypeptide (33, 34). Alterna- 
tively, as described for the microtubule-desta- 
bilizing kinesin XKCMl (35), tight binding of 
katanin oligomers could strain tubulin-tubulin 
contacts, wTth ATP hydrolysis serving to disso- 
ciate katanin-tubulin dimers from this stable 
complex. In either scenario, ATP hydrolysis 
also serves a recycling function because p60- 
p60 and p60-tubulin interactions both weaken 
in the ADP-bound state, dissociating tubulin 
and releasing p60-ADP to begin a new round of 
disassembly. This proposed cycle has similari- 
ties to that of dynamin, which self-assembles 
into a spiral pattern on endocytic membrane 
tubules, changes conformation after hydrolysis 
of guanosine triphosphate in a manner that ve- 
siculates the tubule, and then disassembles in 
the guanosine diphosphate state (36). 

The oligomerization cycle described for 
katanin also may occur in many other AAA 
enzymes. ATP enhances oligomerization of 
VPS4, a single AAA domain protein, and it 
was proposed that this oligomerization could 
be further facilitated by an as yet unidentified 
membrane-associated target (22). Such reac- 
tions could be tested by the FRET-based 
assay described here. In contrast to katanin 
and VPS4, NSF is a constitutive hexamer 
(13) because of the presence of an additional 
nonhydrolytic AAA domain (D2) (21). Our 
results, however, raise the possibility that the 
ATP-hydrolyzing AAA domains (Dl) may 
undergo cycles of tight and weak interactions 
while remaining tethered through their D2 
domains. Thus, nonhydrolyzing AAA do- 
mains may serve as anchors to keep the en- 
zymatic subunits in close proximity through- 
out the hydrolytic cycle. 
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Neuronal Activity-Dependent 
Cell Survival Mediated by 
Transcription Factor MEFZ 

Zixu Mao,'* Azad Bonni,' Fen Xis,' Mireya Nadal-Vicens,' 
Michael E. Greenberg'-\- 

During mammalian development, electrical activity promotes the calcium-depen- 
dent survival of neurons that have made appropriate synaptic connections. How- 
ever, the mechanisms by which calcium mediates neuronal survival during devel- 
opment are not well characterized. A transcription-dependent mechanism was 
identified by which calcium influx into neurons promoted cell survival. The tran- 
scription factor MEFZ was selectively expressed in newly generated postmitotic 
neurons and was required for the survival of these neurons. Calcium influx into 
cerebellar granule neurons led to activation of p38 mitogen-activated protein 
kinase-dependent phosphorylation and activation of MEFZ. Once activated, MEFZ 
regulated neuronal survival by stimulating MEFZ-dependent gene transcription. 
These findings demonstrate that MEFZ is a calcium-regulated transcription factor 
and define a function for MEFZ during nervous system development that is distinct 
from previously well-characterized functions of MEFZ during muscle differentiation. 

The MEF2 proteins constitute a family of 
transcription factors that play a critical role in 
the process of cell differentiation during the 
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development of multicellular organisms (1- 
7). MEFZ proteins cooperate with members 
of the hlyob family in specifying'the differ- 
entiation of skeletal muscle (8, 9). During 
neurogenesis, MEF2 mRNAs are robustly 
transcribed in the developing inamlnalian 
central nervous system ( C Y S )  (10-IZ), al- 
though the fuilctions of MEF2s during ner- 
vous system development have not been 
knou n 

To mvestigate the role of the MEFZ pro- 
teins during mammalian CYS development. 
we first characterized the expression of 
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