diameter of the MSF (27 Å) is much smaller than the lamellar length of ordinary PE crystals (~100 Å) (16), the PE chains are likely prevented from folding within the mesopores. To lend support to the extrusion polymerization mechanism, we evaporated a reaction mixture of Cp_2Ti -MSF with MAO in toluene to dryness and exposed the residue to ethylene. The SEM images of the polymerization mixture (Fig. 6) indicated the formation of PE only on the circular cross sections of the silica fibers where the pore exits are opened.

When a nonfibrous mesoporous silica such as MCM-41 (6) was used in place of MSF as the solid support of titanocene, a crystalline PE containing a fibrous fraction was obtained (17). However, it showed ordinary XRD and DSC patterns (a single endotherm at 142°C; $\Delta H =$ 222 J g⁻¹). On the other hand, use of an amorphous silica-supported titanocene-MAO system (17) for the polymerization resulted in neither fibrous texture nor extraordinary XRD and DSC profiles of the product (a single endotherm at 140°C; $\Delta H =$ 167 J g⁻¹).

It has been reported that a fibrous PE with a diameter of 0.2 to 0.5 μ m, containing a fraction of extended-chain crystals, can be obtained by crystallization of PE from a vigorously stirred xylene solution (18). In contrast, our approach is based on an essentially different conception, namely template-assisted extrusion polymerization. Regularly arranged nanoscopic pores on a honeycomb-like solid surface enable in situ formation of much thinner (30 to 50 nm) PE fibers of extended-chain crystals. The present method, using MSF as a nano-extruder, may be widely applicable to the production of fabricated crystalline polymers. Moreover, the use of mesoporous materials of different architectures as

templates for polymerization is expected to provide common polymers with some new bulk properties.

References and Notes

- O. W. Webster, Science 251, 887 (1991); Y. Okamoto and T. Nakano, Chem. Rev. 94, 349 (1994); S. Kobayashi, Ed., Catalysis in Precision Polymerization (Wiley, New York, 1997).
- P. Smith and P. J. Lemstra, J. Mater. Sci. 15, 505 (1980); J. C. M. Torfs and A. J. Pennings, J. Appl. Polym. Sci. 26, 303 (1981); J. H. Lee, R. M. Brown Jr., S. Kuga, S. Shoda, S. Kobayashi, Proc. Natl. Acad. Sci. U.S.A. 91, 7425 (1994).
- E. Evans, H. Bowman, A. Leung, D. Needham, D. Tirrel, Science 273, 933 (1996); S. B. Roscoe, J. M. Fréchet, J. F. Walzer, A. J. Dias, *ibid.* 280, 271 (1998); K. Akagi et al., *ibid.* 282, 1683 (1998).
- D. A. Tomalia, Adv. Mater. 6, 529 (1994); D.-L. Jiang and T. Aida, Nature 388, 454 (1997); M. Fisher and F. Vögtle, Angew. Chem. Int. Ed. 38, 884 (1999).
- T. P. Nevell, Ed., Cellulose Chemistry and Its Applications (Halsted, New York, 1985), chap. 2.
- J. S. Beck et al., J. Am. Chem. Soc. 114, 10834 (1992);
 A. Corma, Chem. Rev. 97, 2373 (1997).
- 7. G. D. Stucky et al., Adv. Mater. 9, 974 (1997).
- For examples of polymerization with mesoporous materials, see C.-G. Wu and T. Bein, Science 266, 1013 (1994); S. M. Ng, S. Ogino, T. Aida, K. A. Koyano, T. Tatsumi, Macromol. Rapid Commun. 18, 991 (1997); K. Kageyama, S. Ogino, T. Aida, T. Tatsumi, Macromolecules 31, 4069 (1998).
- For examples of olefin polymerization with mesoporous materials, see Y.-S. Ko, T.-K. Han, J.-W. Park, S.-I. Woo, Macromol. Rapid Commun. 17, 749 (1996); J. Tudor and D. O'Hare, Chem. Commun. 1997, 603 (1997); L. K. M. van Looveren et al., Angew. Chem. Int. Ed. 37, 517 (1998).
- MSF (0.3 g) was treated with a dichloromethane solution of titanocene dichloride (Cp₂TiCl₂) at 20°C in the presence of triethylamine as a proton scaven-

ger. After stirring for 18 hours, an insoluble material was isolated by filtration and washed repeatedly with dichloromethane. The amount of Cp₂Ti mounted on the MSF surface was 6×10^{-5} mol Ti g $^{-1}$ (Si/Ti = 280), as determined by inductively coupled plasma mass spectrometry (ICP-MS). See T. Maschmeyer, F. Rey, G. Sankar, J. M. Thomas, Nature **378**, 159 (1995).

- 11. Measured using a flotation method with methanol/ dioxane at 30°C.
- G. B. Galland, R. F. de Souza, R. S. Mauler, F. F. Nunes, *Macromolecules* **32**, 1620 (1999).
 S. Krimm and A. V. Tobolsky, *J. Polym. Sci.* **7**, 57
- (1951).
- B. G. Rånby, F. F. Morehead, N. M. Walter, *ibid*. 44, 349 (1960); L. Mandelkern, A. S. Posner, A. F. Diorio, D. E. Roberts, *J. Appl. Phys.* 32, 509 (1961).
- A. J. Pennings and A. Zwijnenburg, J. Polym. Sci. Polym. Phys. Ed. 17, 1011 (1979).
- 16. W. D. Niegisch and P. R. Swan, J. Appl. Phys. **31**, 1906 (1960).
- 17. Prepared by a method similar to that for the preparation of Cp₂Ti-MSF. The amounts of Cp₂Ti mounted on MCM-41 and amorphous silica were both 5 \times 10⁻⁵ mol Ti g⁻¹. Polymerization conditions: supported catalyst, 50 mg (2.5 \times 10⁶ mol) Ti; cocatalyst, MAO (Al/Ti = 500); ethylene pressure, 10 atm; 20°C, 13.5 hours. PE yields: 1.8 g Cp₂Ti-MCM-41-MAO, 1.0 g Cp₂Ti-amorphous silica-MAO.
- A. J. Pennings, C. J. H. Schouteten, A. M. Kiel, J. Polym. Sci. C 38, 167 (1972).
- 19. Partly supported by a grant-in-aid from the Ministry of Education, Science, Sports, and Culture, Japan, and by a grant from the New Energy and Industrial Technology Development Organization under the Ministry of International Trade and Industry, Japan. We thank S. Tanji, K. Ebara, and O. Mitsui for obtaining the viscometric molecular weight of PE and the SEM pictures of Cp₂Ti-MSF, T. Sugawara for obtaining FE-SEM pictures of polyethylene fibers, and A. Takahara for discussion. K.K. thanks the Japan Society for the Promotion of Science for a Young Scientist Fellowship.

11 June 1999; accepted 30 July 1999

Primordial Noble Gases from Earth's Mantle: Identification of a Primitive Volatile Component

M. W. Caffee,¹ G. B. Hudson,¹ C. Velsko,¹ G. R. Huss,² E. C. Alexander Jr.,³ A. R. Chivas⁴

Carbon dioxide well gases in Colorado, New Mexico, and South Australia show excesses of $^{124-128}$ Xe correlated with 129 I-derived 129 Xe and 20 Ne/ 22 Ne ratios that are higher than the atmospheric 20 Ne/ 22 Ne ratio. The xenon isotopic data indicate the presence of a solarlike component deep within Earth. The presence of this component in crustal and upper mantle reservoirs may be explained by a steady-state transport of noble gases from the lower mantle, which still retains much of its juvenile volatile inventory. These measurements also indicate that the mantle source of these noble gases in the carbon dioxide well gases cannot be the source of Earth's present atmosphere. The variations observed in 129 Xe/ 130 Xe between solar wind xenon, Earth's atmosphere, and mantle samples may be generated by variations of iodine/xenon in terrestrial reservoirs, as opposed to rapid early degassing.

The detailed nature of Earth's precursor material, the structure and volatile inventory of Earth's mantle, and the relation of the atmosphere to more primitive reservoirs within Earth are elusive problems that continue to be addressed with elemental and isotopic abundance studies (1, 2). The scarcity of the noble gases in naturally occurring materials, their chemical inertness, and the presence of distinct identifiable isotopic and elemental compositions make noble gases ideal tracers for many of these investigations (3-5). Recognizing the difference between the noble gas signature in Earth's present atmosphere and

REPORTS

that in the sun's, Brown (6) proposed that the present atmosphere is secondary and was derived from the degassing of Earth's mantle. The rate and extent of this outgassing are uncertain, but measurement of the noble gas isotopes, ⁴⁰Ar from ⁴⁰K [half-life $T_{1/2}$ = 1250 million years (My)] [for example, (7, 8)], ¹²⁹Xe from ¹²⁹I ($T_{1/2}$ = 16 My) [for example, (9, 10)], and ^{131–136}Xe from ²⁴⁴Pu

¹Lawrence Livermore National Laboratory, Post Office Box 808, Livermore, CA 94550, USA. ²Department of Geology, Arizona State University, Tempe, AZ 85287, USA. ³Department of Geology and Geophysics, University of Minnesota, Minneapolis, MN 55455, USA. ⁴School of Geosciences, University of Wollongong, Wollongong, NSW 2522, Australia.

 $(T_{1/2} = 82 \text{ My})$ [for example, (11)] offers a means to investigate these issues. Excesses of ¹²⁹Xe relative to atmospheric Xe have been detected in CO2 well gases from deposits in Harding County, New Mexico (12-16), and in other mantle-derived samples (17-25).

The short half-life of 129I potentially places temporal constraints on the timing of processes responsible for the provenance of the Xe isotopic signatures in terrestrial noble gas reservoirs. Specifically, if the difference between atmospheric Xe and Xe from mantlederived samples in ¹²⁹Xe/¹³⁰Xe ratios is attributed to degassing, it must have occurred early in Earth's history, before much of the ¹²⁹I decayed. Alternatively, these isotopic

differences could be attributed to intrinsic heterogeneities in the I/Xe ratio in terrestrial reservoirs.

For models assuming a uniform starting I/Xe ratio, the existence of ¹²⁹Xe excesses predicts the presence of ²⁴⁴Pu-derived Xe daughters. However, in a reanalysis of the Harding County CO2 well gas, Phinney et al. (15) observed that the fission Xe excess relative to atmospheric Xe could be ascribed to U rather than Pu decay. This apparent lack of Pu-derived Xe is difficult to reconcile with the presence of ¹²⁹I-derived Xe in presumed mantle reservoirs and the abundances of Pu, U, and I in other solar system materials (26). The progenitor of the fission Xe in other

Table 1. Isotopic composition of Xe from CO₂ well gases. Samples of CO₂ were collected in double-ended stainless steel bottles (500 ml). The bottles were thoroughly purged and filled to the supply-line pressure of \sim 4.1 imes 10⁶ Pa, providing 2 \times 10⁴ cm³ of gas at standard temperature and pressure (STP). Typical sample size for analysis was < 15 cm³ STP, a small fraction of the total available gas. For Xe analysis, a small amount of CO₂ was expanded into a known volume for pressure measurement. Carbon dioxide was removed by a Ti sublimation pump. Xenon was collected on activated charcoal at -80°C, and nonsorbing gases were evacuated (except when Ne was analyzed). The Xe

was released from the charcoal and further purified by successive exposure to metal alloy getters. Sensitivity and mass bias were determined from multiple runs of air (0.005 cm³ STP). The final measurements were performed on pulse-counting VG5400 noble gas mass spectrometers. Matched air and CO2 samples were repeatedly analyzed, and the average deviations of the CO₂-Xe isotopic ratios relative to air-Xe were determined. The uncertainties reflect measurement uncertainty but do not include uncertainties in the air-Xe composition. For the analysis of Ne, the air standard consisted of 50% air and 50% He to better match the He/Ne ratio of the CO_2 samples.

	1241/2 (1321/2	1261/2 (1321/2	128 . (132	1291 - 11321	1301/2/1321/2	1311/- /1321/-	1341 - /1321 -	1361 - /1321
Sample	Xe/ -= Xe	·Xe/ ·Xe	Xe/ -=_Xe	Xe/ *= Xe	Xe/ ***Xe	Xe/Xe		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Caroline, Australia	0.003557	0.003307	0.07090	1.05920	0.14940	0.77945	0.40564	0.35278
	± 0.000015	\pm 0.000015	\pm 0.00007	± 0.00053	\pm 0.00010	± 0.00039	\pm 0.00020	± 0.00018
Sheep Mountain, CO	0.003490	0.003247	0.07010	1.00410	0.14838	0.77601	0.41140	0.36073
	± 0.000015	\pm 0.000014	\pm 0.00007	\pm 0.00050	\pm 0.00010	\pm 0.00039	\pm 0.00021	\pm 0.00018
McElmo Dome, CO*	0.003476	0.003231	0.07017	0.97745	0.14883	0.77892	0.40514	0.35276
	\pm 0.000015	\pm 0.000014	\pm 0.00007	\pm 0.00049	\pm 0.00010	\pm 0.00039	\pm 0.00020	± 0.00018
Harding County, NM	0.003511	0.003303	0.07044	1.05980	0.14838	0.77549	0.41359	0.36279
	\pm 0.000021	\pm 0.000020	\pm 0.00010	\pm 0.00052	± 0.00014	± 0.00041	\pm 0.00027	± 0.00025
MORB†	0.003516	0.003221	0.06993	1.07311	0.14765	0.77700	0.40927	0.35731
	\pm 0.000035	\pm 0.000036	\pm 0.00023	\pm 0.00198	\pm 0.00037	\pm 0.00156	\pm 0.00077	± 0.00063
Atmosphere (<i>54, 55</i>)	0.003537	0.003300	0.07136	0.9832	0.15136	0.7890	0.3879	0.3294
	\pm 0.000011	± 0.000017	\pm 0.00009	\pm 0.0012	± 0.00012	\pm 0.0011	\pm 0.0006	± 0.0004
Solar (56)	0.00488	0.00423	0.08475	1.0420	0.16611	0.8272	0.36658	0.29852
	± 0.00004	± 0.00014	± 0.00101	\pm 0.0090	\pm 0.00091	± 0.0053	\pm 0.00250	\pm 0.00187
²³⁸ U (57)	. 0	0	0	0	. 0	0.15493	1.45775	1.76056
	×0	~0	~0	0	0	\pm 0.00594	± 0.03324	± 0.03100
²⁴⁴ Pu (58)	- 0	. 0	. 0	. 0	- 0	0.27772	1.04132	1.11982
	0		0	0	0	\pm 0.01728	\pm 0.01597	± 0.01630

†The MORB value was derived from *This analysis was performed on a 1.5-liter gas sample using a VG5400 mass spectrometer with a Faraday cup for ion current measurement. a subset of the data presented by Kunz et al. (25). We used the weighted mean of 11 of 38 reported Xe compositions that are relatively radiogenic (136Xe/130Xe > 2.35) and also contain enough Xe so that the precision of analysis was relatively high ($^{130}Xe > 8 \times 10^{-14}$ cm³ STP/g).

Fig. 1 (left). ¹²⁹Xe/ ¹³⁰Xe versus ¹²⁸Xe/ ¹³⁰Xe for CO₂ well gases. Also shown is the isotopic composition for atmospheric Xe (air). There is a correlation between the excess ¹²⁹Xe and ¹²⁸Xe. This correlation also exists between ¹²⁹Xe and ^{124,126}Xe. Vertical and horizontal error bars show the measurement uncertainty (1 σ). Fig. 2 (right). ¹²⁸Xe/ ¹³⁰Xe versus ¹²⁴Xe/

¹³⁰Xe for CO₂ well gas-

es. This trend can be interpreted as a mix between solar Xe (56) and atmospheric Xe. Vertical and horizontal error bars show the measurement uncertainty (10).

mantle-derived samples is more difficult to resolve; however, Kunz *et al.* (25) have identified Pu-derived Xe in selected mid-ocean ridge basalts (MORBs) and conclude that ²⁴⁴Pu fission contributes $30 \pm 10\%$ of the total fission ¹³⁶Xe. Although this finding is important, it nevertheless underscores the apparent lack of ²⁴⁴Pu-derived Xe in terrestrial reservoirs. A reservoir having a chondritic ²⁴⁴Pu/²³⁸U signature produces ~30 times more ²⁴⁴Pu-fission Xe than ²³⁸U-fission Xe during 4.55 × 10⁹ years.

To verify that the excess ¹²⁹Xe observed in the Harding County CO2 well gas is more than a local phenomenon and to determine the Xe composition of the gas, we performed high-precision isotopic measurements on CO₂ from Harding County, Sheep Mountain, and McElmo Dome in Colorado and from Caroline in Australia (27). The samples selected for this work represent a variety of geophysical and geochemical conditions, possibly reflecting different origins for the CO₂ well gas. The Caroline, Harding County, and McElmo Dome samples are all principally associated with volcanic activity. The CO₂ from Sheep Mountain is derived from the decomposition of limestones, due to the intrusion of magma.

All of the CO_2 samples have excesses of ¹²⁹Xe (Table 1 and Fig. 1) relative to atmo-

Table 2.	Neon is	sotopic (compositio	on.	The	data	fc
Harding	County	are fror	n Phinney	et	al. ((15).	

²⁰Ne/²²Ne ²¹Ne/²²Ne Location Caroline, Australia 11.9 0.060 ± 0.2 ± 0.002 Sheep Mountain, CO 0.064 10.4 \pm 0.002 \pm 0.2 McElmo Dome, CO 9.0 0.108 \pm 0.2 \pm 0.002 Harding County, NM 11.6 0.062

 ± 1.1

spheric Xe, and all contained fission Xe. In addition to ¹²⁹Xe from ¹²⁹I and fission Xe, we observed variations in the light Xe isotopes ($^{124-128}$ Xe) that are correlated with the variation in ¹²⁹Xe (Figs. 1 and 2). Although nuclear processes can produce ¹²⁹Xe and ¹³¹⁻¹³⁶Xe, the variations in ¹²⁴⁻¹²⁸Xe cannot be explained by this means. Processes involving mass-dependent fractionation could be responsible for excesses of ¹²⁴⁻¹²⁸Xe relative to air Xe; however, they would not be expected to produce correlated excesses of ¹²⁴⁻¹²⁸Xe and ¹²⁹Xe, the latter being a nuclear decay component.

A simple explanation of these data is that they indicate the presence of a primitive reservoir containing Xe that possesses the isotopic composition of solar Xe, which is enriched in the light Xe isotopes relative to Earth's atmosphere. This explanation is consistent with the trends observed in the Ne isotopic compositions. All of the CO₂ gases, except those from McElmo Dome, have 20 Ne/ 22 Ne ratios higher than the atmospheric 20 Ne/ 22 Ne ratio, which suggests a solar composition (Table 2 and Fig. 3). High 20 Ne/ 22 Ne ratios have been observed in other mantlederived samples (22, 24, 28–31). The Ne isotopic compositions from Caroline and

T Solar wind

MORB

0.04

0.06

Caroline

Harding Co.

🕂 Sheep Mtn.

0.08

²¹Ne/²²Ne

McElmo Dome

0.10

0.12

14

13

12

11

10

9

8

0.02

²⁰Ne/²²Ne

Harding County gas wells resemble MORB Ne isotopic compositions. The Harding County and the Caroline CO_2 well gases also have high ³He/⁴He ratios, about three times the atmospheric ratio (15, 27). High ³He/⁴He ratios are generally regarded as the manifestation of a primitive component that is still extant in Earth's mantle (32, 33).

Key issues in the evolution of Earth's noble gas inventory are the mechanism and timing of the processes responsible for the terrestrial noble gas signatures. Although the specific mechanism of the incorporation of solar noble gases in Earth is not known [compare (34) and (35)], the presence of unfractionated solarlike Xe and Ne in a mantle reservoir is direct evidence that solar noble gases were the dominant reservoir from which Earth acquired its noble gas signature. Earth may not be alone in this respect; measurements by Ott (36) indicate the presence of solarlike Xe in Chassigny, a basaltic meteorite ascribed to martian volcanic activity.

The Xe data from the CO_2 well gases address the timing of Xe fractionation. Atmospheric Xe appears to be related to a solarlike Xe composition (37) through mass fractionation. One group of scenarios proposes hydrodynamic escape-induced loss of volatiles

Fig. 3. ²¹Ne/²²Ne versus ²⁰Ne/²²Ne for CO₂ well gases. Also shown are the Ne isotopic compositions of atmospheric Ne and solar wind Ne. The Harding County data are from Phinney *et al.* (15). Isotopic compositions with ²⁰Ne/²²Ne values higher than the atmospheric ratio (air) may indicate the presence of a "solar-type" reservoir of Ne in the mantle. Values displaced to the right of the solar-air mixing line generally reflect nucleogenic production of ²¹Ne. The MORB trend line is from Sarda *et al.* (59). The ²¹Ne/²²Ne ratio in all samples indicates ²¹Ne excesses due to ¹⁸O(α ,n)²¹Ne reactions (57).

Table 3. Decomposition of Xe from CO_2 well gases into underlying components. The component decomposition was calculated by minimizing the sum of the squared weighted deviations of the measured value with respect to a mixture of the assumed four underlying components. We used seven isotope ratios: ^{124}Xe , ^{126}Xe , ^{128}Xe , ^{130}Xe , ^{131}Xe , ^{134}Xe , and ^{136}Xe relative to ^{132}Xe . The deviations were inversely weighted by the calculated variance in the deviation. The uncertainties reported for the decomposition results were deter-

 ± 0.008

mined with a Monte Carlo simulation. The quoted uncertainties are strongly correlated. The error correlation coefficients, $c_{xy'}$ are similar for all of the decompositions and are as follows: air - SW = -0.95, U - Pu = -0.94, air - U = 0.80, SW - U = -0.77, and SW - Pu = 0.82, where $c_{xy} = \sigma_{xy}/(\sigma_x^2\sigma_y^2)^{1/2}$. The subscripts refer to the different components: air, solar wind (SW), ²³⁸U fission (U), and ²⁴⁴Pu fission (Pu); σ_x^2 is the variance in x, σy^2 is the variance in y, and σ_{xy} is the covariance of x and y.

Sample	Fraction from air (¹³² Xe)	Fraction from solar wind (¹³² Xe)	Fraction from ²³⁸ U (¹³² Xe)	Fraction from ²⁴⁴ Pu (¹³² Xe)	²⁴⁴ Pu/(²⁴⁴ Pu + ²³⁸ U) (¹³⁶ Xe)
Caroline, Australia	0.9102	0.0700	0.0154	0.0044	0.15
	± 0.0140	± 0.0127	\pm 0.0015	± 0.0029	
Harding County, NM	0.9076	0.0665	0.0237	0.0022	0.06
0 9	± 0.0092	± 0.0084	± 0.0012	± 0.0023	
Sheep Mountain, CO	0.9556	0.0225	0.0218	0.0001	0.00
•	\pm 0.0083	\pm 0.0074	± 0.0011	± 0.0021	
McElmo Dome, CO	0.9835	0.0000	0.0158	0.0007	0.03
	± 0.0040	± 0.0036	± 0.0007	± 0.0013	
MORB (25)	0.9384	0.0353	0.0125	0.0138	0.41
	\pm 0.0249	\pm 0.0224	\pm 0.0032	\pm 0.0061	

from Earth. Mechanisms proposed for triggering hydrodynamic escape are intense ultraviolet radiation bombardment by the primordial sun (37-43) or giant impacts (44). Alternatively, Ozima and Igarashi (45) argued that Xe mass fractionation, driven by gravitational loss, occurred on the accreting planetesimals before their incorporation into Earth's mantle. The presence of a primitive reservoir of Xe in Earth's mantle favors scenarios in which the fractionation of atmospheric Xe occurred after Earth's accretion.

From the decomposition of the well gas Xe into four possible components (atmosphere, solar, Pu, and Xe), we determined that the fraction of fission Xe attributable to Pu is <20% in the CO₂ well gases (Table 3). For the data of Kunz et al. (25), we calculated that $\sim 40\%$ of the ¹³⁶Xe-fission Xe is due to ²⁴⁴Pu. This value is higher than that given by Kunz et al. (25) and reflects the addition of solar Xe into the calculation. Although the uncertainties preclude a definitive conclusion, the MORB samples appear to have a greater fraction of fission Xe from 244Pu relative to the CO₂ well gases. It is possible that the CO₂ well gas samples have contributions of fission Xe from crustal ²³⁸U. The presence of a crustal U-derived component is supported by the presence of nucleogenic ²¹Ne in all of the samples (Fig. 2).

The characteristic Pu/I ratio derived from the Xe in the CO₂ well gases indicates that the Xe in Earth's present atmosphere was not extracted from the same source as the Xe in the CO₂ well gases. Ozima et al. (46) and Marty (21) argued, on the basis of the derived Pu/I ratio from the Harding County CO₂, that atmospheric Xe was not derived from the same reservoir as the Xe from the CO₂ well gas, and our data strengthen their conclusions. Given accretionary time scales of tens of millions of years for Earth's mantle (47), a considerable amount of time exists for the decay of 129I to ¹²⁹Xe in objects before accretion. Longer accretionary time scales would allow for less incorporation of live 129I into Earth. Accordingly, much of the ¹²⁹Xe we observed may have been produced before accretion.

A long-standing enigma in the study of terrestrial xenology is the apparent lack of Puderived Xe, given the presence of I-derived Xe. The association of the Xe in the CO₂ well gases with a primitive reservoir suggests a possible resolution. The identification of most radiogenic noble gas components is made possible because of the degassing of volatiles before the decay of the radionuclides. If a primitive mantle reservoir has retained most of its volatiles, as has been suggested for ³He, or if most of the primordial noble gases were not outgassed until after decay of the radiogenic species, then the fission components are effectively masked by the primordial noble gases. Accordingly, it seems plausible that Earth inherited its full

complement of Pu, and much of the Xe derived from Pu decay still resides in the lower mantle, its Xe daughters only barely detectable.

Our preferred interpretation indicates that the source region of the CO₂ well gases is characterized by materials that are slightly richer in I relative to primordial Xe when compared to the reservoir from which the atmosphere was derived. It is important that there are meteorite classes characterized by high I/Xe ratios, specifically the enstatite chondrites (35, 48). Among meteorites, the enstatite chondrites have O isotopic abundances that most closely match those of Earth (49). It has been suggested that much of the Earth accreted from a reduced component, such as the enstatite chondrites (50, 51). Because the enstatite chondrites are rich in Xe and I, only a small amount of such material would be required to produce the differences in I/Xe that we propose.

The existence of primordial noble gas, including He, Ne, and Xe, in mantle emanations can be explained as a flux, albeit low, of juvenile volatiles out of a primitive volatilerich reservoir. Our measurements are consistent with the recent models that propose the steady-state transport of noble gases, including Xe, from the lower mantle into the upper mantle (52, 53). For this lower mantle isotopic signature to remain intact, there must be limited mixing of the juvenile noble gases with atmospheric noble gases over the history of Earth. The variations observed in ¹²⁹Xe/ ¹³⁰Xe between solar wind Xe, Earth's atmosphere, and mantle samples may be generated by variations of I/Xe in Earth's reservoirs rather than by rapid early degassing.

References and Notes

- 1. C. J. Allegre and E. Lewin, *Earth Planet. Sci. Lett.* **136**, 629 (1995).
- 2. D. L. Turcotte and L. H. Kellogg, *Rev. Geophys.* 24, 311 (1986).
- T. J. Bernatowicz and F. A. Podosek, Eds., Nuclear Components in the Atmosphere (Japan Scientific Society Press, Tokyo, 1978).
- C. J. Allegre, T. Staudacher, P. Sarda, M. Kurz, *Nature* 303, 765 (1983).
- 5. M. Ozima, Rev. Geophys. **32**, 405 (1994).
- H. Brown, in *The Atmospheres of the Earth and Planets*, G. P. Kuiper, Ed. (Univ. of Chicago Press, Chicago, 1952), pp. 258–266.
- 7. H. A. Shillibeer and R. D. Russell, *Geochim. Cosmochim. Acta* **8**, 16 (1955).
- 8. K. K. Turekian, ibid. 17, 37 (1959).
- J. H. Reynolds and G. Turner, J. Geophys. Res. 69, 3263 (1964).
- C. M. Hohenberg, F. A. Podosek, J. H. Reynolds, Science 156, 233 (1967).
- R. J. Drozd et al., Astrophys. J. 212, 567 (1977).
 W. A. Butler, P. M. Jeffrey, J. H. Reynolds, G. J.
- Wasserburg, J. Geophys. Res. **68**, 3283 (1963). 13. M. S. Boulos and O. K. Manuel, Science **174**, 1334
- (1971). 14. E. W. Hennecke and O. K. Manuel, *Earth Planet. Sci.*
- E. W. Hennecke and O. K. Manuel, *Earth Planet. Sci. Lett.* 27, 346 (1975).
- D. Phinney, J. Tennyson, U. Frick, J. Geophys. Res. 83, 2313 (1978).
- S. P. Smith and J. H. Reynolds, *Earth Planet. Sci. Lett.* 54, 236 (1981).
- 17. I. Kaneoka and N. Takaoka, ibid. 39, 382 (1978).
- 18. T. Staudacher and C. J. Allegre, ibid. 60, 605 (1982).

- 19. M. Ozima and S. Zashu, *ibid*. **62**, 24 (1983).
- 20. _____, Geochim. Cosmochim. Acta 52, 19 (1988).
- 21. B. Marty, Earth Planet. Sci. Lett. 94, 45 (1989).
- H. Hiyagon, M. Ozima, B. Marty, S. Zashu, H. Sakai, Geochim. Cosmochim. Acta 56, 1301 (1992).
- Cosmochim. Acta **36**, 1301 (1992).
 R. Poreda and K. A. Farley, *Earth Planet. Sci. Lett.* **113**, 129 (1992).
- 24. M. Ozima and S. Zashu, ibid. 105, 13 (1991).
- 25. J. Kunz, T. Staudacher, C. J. Allegre, *Science* **280**, 877 (1998).
- I. Y. Azbel and I. N. Tolstikhin, *Meteoritics* 28, 609 (1993).
- À. R. Chivas, I. Barnes, W. C. Evans, J. W. Lupton, J. O. Stone, *Nature* **326**, 587 (1987).
- M. Honda, I. McDougall, D. B. Patterson, A. Dougleris, D. A. Clague, *ibid.* **349**, 149 (1991).
- 29. _____, *Geochim. Cosmochim. Acta* **57**, 859 (1993). 30. K. A. Farley and R. J. Poreda, *Earth Planet. Sci. Lett.*
- **114**, 325 (1993). 31. P. Sarda and T. Staudacher, *Nature* **352**, 388 (1991).
- 32. H. Craig, W. B. Clarke, M. A. Beg, Earth Planet. Sci.
- Lett. **26**, 125 (1975).
- 33. H. Craig and J. E. Lupton, *ibid.* **31**, 369 (1976).
- D. S. Woolum, P. Cassen, D. Porcelli, G. J. Wasserburg, Lunar Planet. Sci. XXX (1999) [CD-ROM].
- J. Crabb and E. Anders, *Geochim. Cosmochim. Acta* 45, 2443 (1981).
- 36. U. Ott. Meteoritics 52, 1937 (1988).
- 37. R. O. Pepin, Icarus 92, 2 (1991).
- D. M. Hunten, R. O. Pepin, J. C. G. Walker, *ibid.* 69, 532 (1987).
- D. M. Hunten, R. O. Pepin, T. C. Owen, in *Meteorites* and the Early Solar System, J. F. Kerridge and M. S. Matthews, Eds. (Univ. of Arizona Press, Tucson, AZ, 1988), pp. 565–591.
- R. O. Pepin, Annu. Rev. Earth Planet. Sci. 20, 389 (1992).
- K. J. Zahnle and J. C. G. Walker, *Rev. Geophys. Space Phys.* 20, 280 (1982).
- 42. K. J. Zahnle, J. F. Kasting, J. B. Pollack, *Icarus* **84**, 502 (1990).
- K. J. Zahnle, J. B. Pollack, J. F. Kasting, Geochim. Cosmochim. Acta 54, 2577 (1990).
- 44. R. O. Pepin, Icarus 126, 148 (1997).
- M. Ozima and G. Igarashi, in Origin and Evolution of Planetary and Satellite Atmospheres, S. K. Atreya, J. B. Pollack, M. Matthews, Eds. (Univ. of Arizona Press, Tuscon, AZ, 1989), pp. 306–327.
- M. Ozima, F. A. Podosek, G. Igarashi, *Nature* **315**, 471 (1985).
- 47. S. J. Weidenschilling, Icarus 44, 172 (1980).
- B. M. Kennedy, B. Hudson, C. M. Hohenberg, F. A. Podosek Geochim, Cosmochim, Acta 52, 101 (1988).
- 49. R. N. Clayton and T. K. Mayeda, J. Geophys. Res. 89, 245 (1984).
- 50. E. Anders and T. Owen, *Science* **198**, 453 (1977).
- 51. K. K. Turekian and S. P. Clark, Earth Planet. Sci. Lett. 6
- 346 (1969). 52. D. Porcelli and G. J. Wasserburg, *Geochim. Cosmo-*
- *chim. Acta* **59**, 1991 (1995). 53. _____, *ibid.*, p. 4921.
- 54. J. R. Basford, J. C. Dragon, R. O. Pepin, M. R. Cosico,
- V. R. Murthy, Proc. Lunar Sci. Conf. 4th, 1915 (1973). 55. A. O. Nier, Phys. Rev. 77, 789 (1950).
- 56. R. Wieler and H. Baur, Meteoritics 29, 570 (1994).
- 57. G. W. Wetherill, Phys. Rev. 96, 679 (1954).
- G. B. Hudson, B. M. Kennedy, F. A. Podosek, C. M. Hohenberg, Proc. Lunar Planet. Sci. Conf. 19th, 547 (1989).
- 59. P. Sarda, T. Staudacher, C. J. Allegre, *Earth Planet. Sci. Lett.* **91**, 73 (1988).
- 60. This work benefited from the efforts of many colleagues. B. Ruiz and W. Culham provided technical assistance throughout the experiment, and we profited from discussions with D. Phinney, M. Ozima, and R. Pepin. We acknowledge the anonymous reviewers, whose efforts have improved this manuscript. M.C. acknowledges support from the Lawrence Livermore National Laboratory (LLNL) Institute of Geophysics and Planetary Physics. This work was performed at LLNL, operating under the auspices of U.S. Department of Energy contract ENG-7405.

12 November 1998; accepted 17 August 1999

LINKED CITATIONS

- Page 1 of 1 -

You have printed the following article:

Primordial Noble Gases from Earth's Mantle: Identification of a Primitive Volatile Component M. W. Caffee; G. B. Hudson; C. Velsko; G. R. Huss; E. C. Alexander Jr.; A. R. Chivas *Science*, New Series, Vol. 285, No. 5436. (Sep. 24, 1999), pp. 2115-2118. Stable URL: http://links.jstor.org/sici?sici=0036-8075%2819990924%293%3A285%3A5436%3C2115%3APNGFEM%3E2.0.CO%3B2-5

This article references the following linked citations:

References and Notes

¹⁰ Xenon-Iodine Dating: Sharp Isochronism in Chondrites

C. M. Hohenberg; F. A. Podosek; John H. Reynolds Science, New Series, Vol. 156, No. 3772. (Apr. 14, 1967), pp. 233-236. Stable URL: http://links.jstor.org/sici?sici=0036-8075%2819670414%293%3A156%3A3772%3C233%3AXDSIIC%3E2.0.CO%3B2-P

¹³ The Xenon Record of Extinct Radioactivities in the Earth

Mervet S. Boulos; Oliver K. Manuel Science, New Series, Vol. 174, No. 4016. (Dec. 24, 1971), pp. 1334-1336. Stable URL: http://links.jstor.org/sici?sici=0036-8075%2819711224%293%3A174%3A4016%3C1334%3ATXROER%3E2.0.CO%3B2-Q

²⁵ Plutonium-Fission Xenon Found in Earth's Mantle

Joachim Kunz; Thomas Staudacher; Claude J. Allègre *Science*, New Series, Vol. 280, No. 5365. (May 8, 1998), pp. 877-880. Stable URL: http://links.jstor.org/sici?sici=0036-8075%2819980508%293%3A280%3A5365%3C877%3APXFIEM%3E2.0.CO%3B2-2

⁵⁰ Mars and Earth: Origin and Abundance of Volatiles

Edward Anders; Tobias Owen Science, New Series, Vol. 198, No. 4316. (Nov. 4, 1977), pp. 453-465. Stable URL: http://links.jstor.org/sici?sici=0036-8075%2819771104%293%3A198%3A4316%3C453%3AMAEOAA%3E2.0.CO%3B2-N

NOTE: *The reference numbering from the original has been maintained in this citation list.*

