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with wire mesh (8 m m  between wires), and 42 cm 
high. The water level was 1.6 cm above the level of 
the platform, which was placed in the middle of one 
quadrant (SE) of the pool, midway between wall and 
pool center. The water (21" 2 2°C) was made opaque 
by the addition of 7.2 kg of powdered low-fat milk. 
Tracking of mice was as described (57). A month 
before the actual experiment, the mice swam daily 
for 13 days (platform N W )  in a smaller pool (60 cm), 
which accustomed them t o  mounting the platform. 
Spatial navigation trials: Mice (19 wild type, 21 CluR- 
A-I-) were gently placed into the water at the edge 
of the pool at one of four start positions arbitrarily 
named N, S, E, and W. In a block of four trials all start 
positions were used in a semirandom order that 
differed every day. Finding the platform was defined 
as climbing onto i t  and staying for at least 5 s. Once 
on the platform, the mouse was allowed t o  stay for 
30 s. For any mouse that failed t o  find the platform 
within 90 s, a latency of 90 s was recorded, and the 
mouse was placed on the platform. To ensure that 
the mouse did not use cues inside the pool, we 
rotated the pool daily and removed floating debris 
and feces before every trial. Transfer trials: On trans- 
fer trials the mice were placed onto the edge of the 
pool and allowed t o  swim wi th no platform present. 
The video system recorded the percentage of t ime 
spent in the various quadrants. The experimenter 
recorded from a video monitor the number of times 
the mouse crossed the previous position of the plat- 
form; crosses were defined by the head fully entering 
the square representing the platform position. Trans- 
fer trial in the absence of visual cues: To hide distal 
visual cues, we hung white curtains from the ceiling 
in a circle (2 m diameter around the pool). 
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Rapid Spine Delivery and 
Redistribution of AMPA 

Receptors After Synaptic NMDA 
Receptor Activation 
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To monitor changes in a-amino-3-hydroxy-5-methyl-4-isoxazole propionate 
(AMPA) receptor distribution in living neurons, the AMPA receptor subunit 
CluR1 was tagged with green fluorescent protein (CFP). This protein (GluR1- 
GFP) was functional and was transiently expressed in hippocampal CAI  neu- 
rons. In dendrites visualized wi th  two-photon laser scanning microscopy or 
electron microscopy, most of the GluR1-GFP was intracellular, mimicking en- 
dogenous CluRl distribution. Tetanic synaptic stimulation induced a rapid 
delivery of tagged receptors into dendritic spines as well as clusters in dendrites. 
These postsynaptic trafficking events required synaptic N-methyl-D-aspartate 
(NMDA) receptor activation and may contribute t o  the enhanced AMPA re- 
ceptor-mediated transmission observed during long-term potentiation and 
activity-dependent synaptic maturation. 

Excitatory synaptic transmission in the verte- 
brate central nervous system is mediated by 
activation of AMPA- and NMDA-type gluta- 
mate receptors. Repetitive synaptic activity 
transiently activates NMDA receptors and 
triggers long-lasting plasticity (1). expressed. 
at least in part, as an increase in AMPA 
receptor function (2, 3). The molecular basis 
for activity-induced changes in AMPA recep- 
tor function is not blown and may include 
changes in channel coilductance (4), possibly 
after receptor phospholylation (j), or deliv- 
ery of AMPA receptors to synapses, as has 
been documented during development (6). 
We investigated if an increase in AMPA 
receptor number at synapses may occur rap- 
idly during NMDA receptor-dependent syn- 
aptic plasticity. 

AMPA receptors are oligomers formed by 
a combination of four different subunits. 
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GluRl to 4 (GluRA to D) (7).  A substantial 
proportion of endogenous AMPA receptors 
in hippocampal neurons have the GluRl sub- 
unit (8) .  We constnlcted a recombinant 
GluRl tagged with green fluorescent protein 
(GFP) at the putative extracellular NH,-ter- 
minus (GluR1-GFP; Fig. 1A) (9). This pro- 
tein was expressed in human embryonic kid- 
ney (HEK) 293 cells; extracts showed a sin- 
gle band by protein immunoblotting of the 
expected molecular mass (Fig. 1B). Whole- 
cell recordings from GluRl-GFP-transfected 
HEK 293 cells showed inwardly rectifying 
responses to puffed agonist (Fig. 1C) (7). 
Cotransfection of GluR1-GFP with wild-type 
GluR2 yielded responses with no rectification 
(Fig. 1C). indicating effective hetero-oli- 
gomerization between GluR1-GFP and 
GluR2, as homomeric GluR2 can produce 
little current (7). 

GluR1-GFP was introduced into neurons 
with Sindbis virus expression system (10, 
11). In hippocampal dissociated cultured neu- 
rons (Fig. 2) (IZ), GluR1-GFP showed distri- 
bution throughout the dendritic tree with ex- 
pression levels in dendrites approximately 
three times that of endogenous GluRl (13). 
Immunostaining for surface (Fig. 2D) (14) 

.sciencemag.org SCIENCE VOL 284 11 JUNE 1999 1811 



R E S E A R C H  A R T I C L E S  

recombinant receptor displayed a punctate 
distribution that colocalized with surface la- 
beling of endogenous GluR2 (Fig. 2D) as 
well as with a presynaptic marker (synapsin 
1; Fig. 2D). Whole-cell responses to caged 
glutamate showed greater rectification in 
GluR1 -GFP- expressing neurons, indicating 
functional delivery of homomeric GluRl- 
GFP to the surface (Fig. 2B) (15). 

We next examined the 'distribution of 
GluRl-GFP in neurons of organotypic hip- 
pocampal slice cultures (16) because such a 
preparation can display robust long-term po- 
tentiation (LTP) (Fig. 3A). Two to 3 days 
after focal viral infection of the CAI region 
(17), several hundred neurons showed 
GluRI-GFP expression (Fig. 3B) distributed 
throughout the apical and basal dendritic 
trees. To quantify the subcellular distribution 
of recombinant receptor in these slice cul- 
tures, we used postembedding immuno-gold 
electron microscopy with an antibody direct- 
ed against GFP (18,19). We examined apical 
dendritic areas in infected regions (Fig. 3, E 
and F). Most of the labeling in dendrites was 
located intracellularly in the dendritic shaft 
(88%). The remainder was largely (9%) on 
the dendritic shaft surface, with little (2%) in 
spines, and only three grains (0.4%) were 
found at postsynaptic densities, sites of syn- 
aptic contact. This distribution pattern was in 
general similar to that of endogenous GluRI, 
detected with an antibody to GluRl in com- 
parable dendritic regions from (noninfected) 
postnatal day 10 brain tissue (Fig. 3F). Most 
of the endogenous GluRl labeling in den- 
drites was also intracellular in the dendritic 
shaft (71%), with 20% on the dendritic shaft 
surface and 8% in surrounding spines [3% 

Two kinds of changes in GluRl-GFP dis- (Fig. 4). In about half of these spines (17 of 
tribution were detected after tetanic stimula- 38), the amount of fluorescence at the corre- 
tion: delivery to spines and clustering in the sponding location in images obtained before 
dendritic shaft. Delivery of GluRI-GFP was a tetanus was near background (23) (termed 
measured in 38 spines from five experiments "empty" spines, Fig. 4A, arrow a), whereas in 

Fig. 1. Expression and func- 
tional analysis of CIuR1 
fused with CFP (CluRI- ..., , 

T w v  
CFP). (A) Schemati; draw- 
ing of expected transmem- 206 KD - - 
brane topology of CIuR1- 125KD -- - 
CFP. N, NH,-terminus; C. 88 KD - 
COOH-terminus. (9) Pro- d In 48 KD - 
tein immunoblotting of mem- 
brane fractions of rat fore- p & -c 
brain and HEK cells trans- C 
fected CIuR1, with probed CluR1-CFP with anti- or 8 zo GIuRl-GFP 

body to  CluRl COOH-ter- -80 -40 
minus. The increase in mo- Membrane 
lecular mass in CIuR1-CFP Potentla1 (rnV) 
is comparable with the rno- GIuR1 -GFP 

lecular mass of CFP (27 + GluR2 

kD). There was no other 
band detected at lower mo- -2 
lecular mass. (C) (Left) Cur- 
rent-voltage plots of whole-cell responses from HEK 293 cells transfected with CluR1-CFP alone (0, 
N = 3) and with CIuR1-CFP with CluR2 (0. N = 3). Responses are normalized to  values at -60 mV. 
(Right) Representative responses at membrane potentials from -80 to +60 mV (20-mV steps). One 
millimolar kainic acid was puff applied in the presence of 100 pM cyclothiazide. 

0.5 

-80 -40 

Membrane 
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Uninfected 

was in postsynaptic densities (PSD)] (20). 200 rns 

To monitor changes in the distribution of 
GluRl-GFP, we used time-lapse two-photon 
laser scanning microscopy (TPLSM) (21) and 
examined neurons in organotypic slices 2 to 3 
days after infection. High-resolution optical 
stack images of dendritic regions revealed 
that the GluRI-GFP signal was fairly homo- 
geneous (Fig. 3, B and C) along the dendrite 
and largely restricted from dendritic spines, 
consistent with the irnmuno-gold electron mi- 
croscopic analysis (Fig. 3F) and in contrast to 
the distribution of plain GFP, which dis- 
played numerous spines (Fig. 3D). To test the 
effect of synaptic activity on receptor distri- 
bution, we placed a small glass-stimulating 
electrode near (5 to 15 pm) a group of den- 
drites labeled with GluRI-GFP (22). In the 
absence of evoked activity, the GluRI-GFP 
distribution pattern was stable for hours with 
no signs of photodamage and little bleaching 
(see below; for example, Fig. 6A). However, 
delivery of a brief tetanic stimulus, which 
was sufficient to induce LTP in these slices 
(Fig. 3A), produced a rapid redistribution of 
GluR1-GFP (Figs. 4 to 6). 

channel 
Anti- 

GIuR2 
NP 

Anti- 

channel 
o v e ~  overlay 1 

Fig. 2. Expression of CIuR1-CFP in dissociated cultured hippocampal neurons is targeted to  
synapses. (A) Neuron 1 day after infection expressing CIuR1-CFP. Scale bar, 30 p m  (B) Whole-cell 
responses to uncaged glutamate (10 ms, 40 p M  CNB-glutamate). (Left) Current-voltage relations 
plotted, normalized to  values at -60 mV. 0, infected cell (n = 8); 0, uninfected cell (n = 8). (Right) 
Responses from uninfected (top) and infected (bottom) neuron at different holding potentials (-60 
mV to +60 mV, 20-mV steps). (C) Dissociated cultured neurons expressing plain CFP were fixed 
in nonpermeabilizing (NP) or permeabilizing (P) conditions (74), stained with antibody to CFP, and 
imaged with filters for CFP (top) or antibody to  CFP (Texas Red) (bottom). The same gray scale was 
used on all images. Scale bar, 2 pm. (D) Surface expression of CluR1-CFP. lmmunostaining with 
antibodies to  CFP (polyclonal for double staining with CluR2 and monoclonal for synapsin I, both 
at 1 : 100; Clontech) under nonpermeabilized conditions reveals punctate pattern of expression. This 
punctate pattern colocalizes with endogenous CluR2 (left) detected with antibody against extra- 
cellular domain of CluR2 (10 pglml; Chemicon International) and synapsin I (Syn 1) (1:lOO) 
(immunostained after permeabilizing conditions) (right). Scale bar, 5 pm. 
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the remaining 21 o f  38 spines (termed "ac- creased from 200 + 43 A U  to 1737 + 235 GluRl-GFP signals at spines were never ob- 
tive" spines, Fig. 4A, arrow b), there was a A U  [measured in arbitrary fluorescence units served in the absence o f  tetanic stimulation 
detectable amount o f  GluRl-GFP before tet- (AU); mean ? SD, N = 17.1 after a tetanic (24) .  
anus. The intensity distribution o f  these ana- stimulus. A t  "active" spines, the increase was In addition to spine delivery, tetanic stim- 
lyzed spines is shown in Fig. 4, B and C. The from 1023 ? 101 A U  to 2210 ? 235 A U  ulation produced clustering o f  GluRl-GFP in 
GluR1-GFP signal at "empty" spines in- (mean + SD, N = 21). Such increases in the dendritic shaft. The clustered receptor 

Fig. 3. CluR1-CFP expression in organotypic 
hippocampal slice culture is primarily intracel- 
lular. (A) Organotypic slice culture displays LTP 
in CAI. (Top) Plot of field excitatory postsyn- 
aptic potentials recorded in CAI region of or- 
ganotypic slice (mean ? SEM, N = 5; tetanus: 
time = 0). (Bottom) Whole-cell recording of 
synaptic responses from neuron expressing 
CluR1-CFP. One hundred synaptic stimuli (2 
Hz) were paired with depolarization (0 mV) 
where indicated. (Insets) Representative re- 
sponses obtained before and after LTP induc- 
tion. Scale bar. 0.3 mV. 10 ms for top traces; 20 
PA, 10 ms for bottom traces. (B) Expression of 
CIuR1-CFP in pyramidal cells 2 days after in- 
fection, imaged with TPLSM. Scale bar, 20 pm. 
(C and D) Apical dendrite of CAI pyramidal 
cells expressing either GIuR1-GFP (C, top and 
bottom) or plain CFP (D, top and bottom). 
Scale bar, 5 pm. (E) Immuno-electron micro- 
scopic image of dendrite expressing CIuR1-CFP. 
Postembedding immunolabeling was per- 
formed with antibody to  CFP (78-20). Immu- 
nogold particles were mainly distributed inside 
dendrite. Scale bar, 0.3 pm. (F) Distribution of 
immunogold particles in different dendritic 
compartments for CIuR1-CFP (left) and endog- 
enous CluRl (right). (Inset) Location of im- 
muno-labeling. See (20) for details. (C) Surface 
expression of CluR1-CFP assessed with fluores- 
cent immunostaining. Cells infected with CIuR1. 
antibody to  CFP (Texas Red detection). Images 
dendritic membrane (bottom, left) with no dete 

Fig. 4. Tetanic stimula- 
tion induces spine deliv- 
ery and clustering of 
CIuR1-GFP. (A) Column 
1, GIuR1-CFP expression 
in apical dendritic region. 
Stimulation electrode was 
placed in nearby region 
(-5 to 10 p m  from top 
left comer, outside imaged 
region). Column 2, region 
near stimulation electrode 
(top and middle: two dif- 
ferent magnifications of 
same region) and another 
region (bottom) imaged 
before tetanus. a and b de- 
note locations of interest. 
Column 3, same regions 
imaged 30 min after te- 
tanic stimulation. Arrows 
mark regions a and b ir 
column 2. Column 4. sur. 
face CIuR1-GFP assessec 

GIuRl-GFP GFP 

0 
Q) 

0 1 I i 

0 5 10 15 
Time (min) 

GFP 

GFP were fixed and stained under nonpermeabilized fleft) and permeabilized (right) conditions with 
detected in CFP channel (top) or antibody t o  CFP channel (bottom). Note immunostaining along 

'ctable spines. Scale bar, 5 pm. 

A 1 Tetanus B 

C Back Bebre Anw 

- 
I After - 

with antibody to CFP im, 5 
munostaining in nonperrneabilized fixation conditions. At region showing redistribution (top and middle), immunostaining 4 
detected increased CIuR1-CFP on dendrite and spine-like structures. Scale ban, 2 pm. (0) Quantification of CIuR1-CFP 
signal intensity of spines before and after tetanus. Spines were identified in images obtained 15 min after tetanus. 
Fluorescence was integrated over two to three optical sections containing spine and also from equivalent places before 0 

tetanus. Background fluorescence was determined in nearby regions of similar size without any obvious structure and was ,& 0 ,cpa20s,o~a 
subtracted from all measurements. Spines were selected from five independent experiments carried out in identical 
experimental conditions. Data from the individual spines are connected by lines. Units are arbitrary fluorescence units Fluorescence (AU) 

(AU). Imaging parameters were identical before and after tetanus. (C) The same data plotted as histograms. Bin width, 200 AU. 
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Fig. 5. Tetanic stimulation induces clustering of CIuR1-CFP. (A) TPLSM images Tetanus 
of dendrite before (20 min, Iek 10 min, middle) and after (rifit) tetanic * 20 before 10 min before . 15 m h  after 

stimulation. Note marked clustering of signal in dendrite, includingaithe base 
of a spine (arrow) and at regions without obvious spines (arrowhead). In this 
example, spine (arrow) became only slightly brighter (10% increase in fluo- 
rescence) and no other spines emerged. Scale bar, 2 pm. (B) Autocorrelation 
function computed over boxed region in (A) at 20 min ( 0 )  and 10 min (A) 
before and 15 min after ( 0 )  stimulation (25). Distance at which function 
decays to 50% (RS0%) was used as a measure of clustering. A decrease in Rso, 
value indicates cluster formation. (C) Dendrites with clustering have more 
surface CLuR1-CFP. Images were taken before and after tetanic stimulation 
and after immunostainhg with antibody to CFP under nonpermeabilized ti 

fixation condition. Amount of CluR1-CFP on surface versus total amount of 700 
CluR1-CFP is plotted against the ratio of value before and after the 
tetanus for dendritic segments that appeared ( 0 )  or did not appear ( 0 )  to ,5 
show clustering. A larger value for anti-CFPICFP ratio indicates that more 2 0 

-15minafler ; 
tagged receptor reached the surface of membrane. A decrease in Rso, value 5 so 
(indicating clustering) is correlated with a larger anti-CFPICFP ratio (R = I 

-0.78; P < 0.01). - 25 o) 
12 

2 
0 10 

0 0.5 1 1.5 60 70 80 90 100 110 

Radlus (vm) R, after 1 R, before (%) 

could be seen at the base of a spine (Fig. 5A, their contribution to an increase in synaptic Indeed, we found that GFP-tagged recep- 
arrow) or with no detectable delivery to transmission. tors in hippocampal slice neurons were rap- 
spines (Fig. 5A, arrowhead). Clustering was To determine whether the redistribution of idly recruited to dendritic spines after a tetan- 
quantified by computing an index of an au- 
tocorrelation function (R,,,) calculated over 
a region of interest before and after tetanus 
(Fig. 5B) (25): In the absence of stimulation, 
this index changed little over time, on aver- 
age increasing 5.4 2 6.6% (mean 2 SD, N = 

20, randomly chosen dendrites) between two 
observation periods separated by 15 min. 
However, upon tetanic stimulation, 27 den- 
dritic segments from 18 experiments became 
clustered (R,,, decreased by 17.8 2 1.6%, 
mean + SD) (26). Dendritic regions show- 
ing spine delivery of GluR1-GFP generally 
showed clustering of receptor (R,,, de- 
creased by 18.3 + 2.6% at the 10 dendrites 
analyzed above, showing delivery of GluRl- 
GFP to spines after tetanus). 

We wished to determine if tetanus-in- 
duced redistribution of GluRl-GFP included 
delivery to the surface. We first established a 

GluR1-GFP by tetanic stimulation requires 
synaptic activation of NMDA receptors, we 
conducted experiments with (D,L)-2-amino- 
5-phosphono valeric acid (APV), a reversible 
NMDA receptor antagonist (Fig. 6). With 
APV in the bath, tetanic stimulation produced 
no clear redistribution of GluR1-GFP (neither 
spine delivery nor clustering; Fig. 6A). After 
washing APV for 45 min, another tetanus 
was delivered at the same site. Now spine 
delivery and clustering could be detected (see 
Fig. 6, no APV, -7 and 15 min). Ensemble 
averages from several experiments in which 
spine delivery and clustering were monitored 
in the presence and subsequent absence of 
APV are shown in Fig. 6B. These results 
show that both clustering and spine delivery 
of GluR1-GFP require synaptic activation of 
NMDA receptors. These experiments also 
demonstrate that the effect of tetanic stimu- 

ic stimulus (Figs. 4 and 6). Immunostaining 
indicated that at least some of the recruited 
GluR1-GFP reached the spine surface. The 
delivery to the dendritic shaft surface may 
also represent synaptic delivery, as shaft syn- 
apses (or short "stubby" spines) are more 
common in young tissue (28). The spine de- 
livery of the tagged AMPA receptor required 
synaptic NMDA receptor activation, provid- 
ing a strong link between receptor recruit- 
ment and activity-induced forms of plasticity. 
These results provide direct evidence show- 
ing rapid effects of synaptic activity on post- 
synaptic membrane trafficking. 

In about half of the spines detected with 
GluRl-GFP after tetanus, there was no fluo- 
rescence at the corresponding region before 
tetanic stimulation. On the basis of their 
length (0.95 + 0.17 pm) and a previous study 
(29), these spines are not likely to have been 

method using TPLSM to image surface re- lation is not due to direct depolarization of generated after.tetanic stimulation. Our pre- 
combinant receptor in fixed slices (Fig. 3G) dendrites by the current passed through the vious study indicated that tetanic stimuli do 
(14). The distribution and quantification of 
GluR1-GFP with these methods (13.3 + 
0.9% on surface) generally agree with values 
obtained with immuno-gold electron micros- 
copy (9% on surface, Fig. 3F). Regions ex- 
amined in live tissue during stimulation were 
analyzed for surface distribution after fixa- 
tion. Regions in which GluRl-GFP had un- 
dergone clustering with tetanic stimulation 
showed a greater amount of receptor at the 
surface (Figs. 4A, column 4, and 5C; 18.6 + 
0.2 % on surface), although most of the re- 
ceptor still remained intracellular. At spines 
that showed GluRl-GFP delivery after a tet- 
anus (including previously "empty spines"), 
surface GluRl-GFP could also be detected 
(Fig. 4A). This indicates that some of the 
GluRl-GFP delivered into spines after a tet- 
anus reached the spine surface, suggesting 

stimulating electrode, because such effects 
would not be blocked by APV. 

In this study, we showed that the GFP- 
tagged GluRl receptor is electrophysiologi- 
cally functional and mimics a number of 
cell-targeting properties of endogenous re- 
ceptors. In dissociated neurons, the protein 
is delivered to synapses in the absence of 
evoked activity. In contrast, in slices given no 
stimulation, a large fraction of the recombi- 
nant GluRl-GFP, as well as endogenous 
GluR1, is found in the intracellular dendritic 
compartment and excluded from synapses. 
This difference may explain the observed 
difficulty with which LTP is generated in 
dissociated neurons (27). This intracellular 
pool is within 1 to 2 pm of synapses and thus 
could be rapidly delivered to synaptic sites 
during plasticity. 

not generate short spines, but rather such 
stimuli generate filopodial structures that 
are typically >3 pm in length (29). In view 
of these observations, it is likely that 
GluRl-GFP was delivered to existing 
spines and not newly formed spines, al- 
though such a possibility cannot be exclud- 
ed by our results. If receptors were deliv- 
ered to existing "empty" spines, these could 
represent "silent synapses": synapses with 
only NMDA receptors that gain AMPA 
receptors during LTP (3). 

Our results build on a number of studies 
suggesting that the delivery of AMPA recep- 
tors to synapses contributes to activity-depen- 
dent plasticity. Inhibition of membrane fu- 
sion processes in the postsynaptic cell blocks 
LTP (30). Furthermore, the COOH-termini of 
AMPA receptor subunits GluR2 and GluR4c 
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A APV 

APV wash 
45 rnin 

No APV 

Fig. 6. N M D A  receptor antagonist r e -  
versibly blocks tetanus-induced redis- B 
tribution of GIuR1-GFP. (A) Images of 
apical dendritic segments obtained at 3:: llmpM npv different times during experimental ,- 

$ S O ~ {  Tetanus 2 iL period. (Top) In the presence of 100 j IJ.M D.L-APV, tetanus produces little 
change in fluorescence pattern. (Bot- 
tom) After 45 min of drug wash, tet- 

' y4' anus at  the same site produces both ' -' "' ' 
-20 0 20 40 -20 0 20 40 -20 0 20 40 -20 0 20 40 delivery to spines and clustering of 

Time (mln) Time (mln) GIuR1-CFP. In this example, spine de- 
livery persisted at 50 min after tetanus in only two of five spines and clustering reverted to 
smooth distribution. Time stamps are in minutes relative to tetanus. Scale bar, 5 pm. (B) 
Ensemble averages from experiments carried out as in (A). (Left) Spines showing increased 
CIuR1-GFP fluorescence after tetanus in no APV (tetanus 2) were measured before and after 
tetanus in APV (tetanus 1). N = 12 spines from four experiments. For details of quantification, 
see legend to Fig. 48. (Right) Dendritic regions showing clustering in no APV (tetanus 2) were 
measured before and after tetanus in APV (tetanus 1).  N = 7 dendrites from seven experi- 
ments. For details of quantification, see (25). 

bind N-ethylmaleimide-sensitive fusion pro- 
tein, a protein involved in membrane fusion 
processes (31). Vesicular organelles, possibly 
undergoing exocytosis and endocytosis, have 
been detected with electron microcopy in 
spines (32). And last, dendrites can display a 
calcium-evoked exocytosis of trans-Golgi- 
derived organelles that is mediated by the 
calciurn/calmodulin-dependent protein kinase 
11, an enzyme thought to mediate LTP (33). 
Other postsynaptic mechanisms, such as an 
increase in conductance of AMPA receptors 
(4, 5), may also occur in parallel. Our results 
also do not rule out a contribution by presyn- 
aptic modifications. 

calcium through synaptic NMDA receptors 
may cause nucleation of AMPA receptor- 
containing .membranes close to active syn- 
apses. Once formed, such sites may serve 
several functions. These sites may replenish 
those receptors delivered to spines during 
plasticity. Additionally, they may serve as a 
"synaptic tag" ( 3 9 ,  providing a docking site 
for AMPA receptors synthesized at distant 
sites. Last, they could provide a site for local 
AMPA receptor synthesis (36). In these ca- 
pacities, such clusters could represent a struc- 
tural modification serving as a long-lasting 
memory mechanism. 

In addition to the spine delivery of GluRl- 
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Reconstructing Phylogeny with 
and without Temporal Data 

David L. Fox," Daniel C. Fisher, Lindsey R. Leighton 

Conventional cladistic methods of inferring evolutionary relationships exclude 
temporal data from the initial search for optimal hypotheses, but stratocla- 
distics includes such data. A comparison of the ability of these methods t o  
recover known, simulated evolutionary histories given the same, evolved char- 
acter data shows that stratocladistics recovers the  true phylogeny in over twice 
as many cases as cladistics (42 versus 18  percent). The comparison involved 550 
unique taxon-by-character matrices, representing 1 5  evolutionary models and 
fossil records ranging from 100 t o  10 percent complete. 

Phylogenetic analysis seeks to identifi the pat- teinporal order of specimens in the fossil 
tern of histoiical relationships alnong organ- record, as evidence for infei~ing relationships 
isms. However, controversy persists over not (2). Proponents of cladistic methods often 
only what constitutes an appropriate inference argue that temporal data may be misleading 
strategy, but also what categories of data are as indicators of relationship (3). Arguinents 
acceptable as evidence ( I ) .  One recent debate suppoiti~lg this position are essentially a pri- 
focuses on the use of stratigraphic data, or the ori and do not address the relative efficacy of 

methods that do and do not use tenlporal data. 
We explore the efficacy of using temporal 
data through siinulations of evolutionary his- 
torles and associated character data, assessing 
the relative perforina~lce of two phylogenetic 
methods, cladistics and stratocladistics. 

Both con\~entional cladistic analysis and 
stratocladistics rely on parsimony, in the 
sense of minimizing ad hoc auxiliary hypoth- 
eses, to evaluate altenlative iilterpretations of 
relationslnp. Cladistic analysis selects inter- 
pretations that ini~linlize hypotheses of ho- 
moplasy, or shared traits that do not result 
from c o n ~ n ~ o n  ancestry (4, 5) .  Hypotheses of 
homoplasy are counted individually and, 
laclcnlg contravening evidence, equally. 

Stratocladistics (6) incorporates strati- 
graphic data into the logic of cladistic hy- 
pothesis choice by selecting inteiyretations of 
relationship that lniilimize hypotheses of ho- 
inoplasy and nonpreservation of lineages 
through intervals that preserve other lineages 
under analysis, giving neither category of 
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