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Spatiotemporal Dynamics of 
lnositol 1,4,5=Trisphosphate 

That Underlies Complex ca2+ 
Mobilization Patterns 

Kenzo Hirose,* Shiro Kadowaki, Mao Tanabe, Hiroshi Takeshima, 
Masamitsu lino 

lnositol 1,4,5-trisphosphate (IP,) is a second messenger that elicits complex 
spatiotemporal patterns of calcium ion (Ca2+) mobilization and has essential 
roles in the regulation of many cellular functions. In Madin-Darby canine kidney 
epithelial cells, green fluorescent protein-tagged pleckstrin homology domain 
translocated from the plasma membrane to the cytoplasm in response to 
increased concentration of IP,. The detection of translocation enabled monitoring 
of IP, concentration changes within single cells and revealed spatiotemporal 
dynamics in the concentration of IP, synchronous with Ca2+ oscillations and 
intracellular and intercellular IP, waves that accompanied Ca2' waves. Such 
changes in IP, concentration may be fundamental to Ca2+ signaling. 

IP, productioll by phospholipase C (PLC)- tracellular event after stirnulatio~l by hor- 
mediated hydrolysis of phosphatidylinosi- mones; autacoids, and neurotransmitters. 
to1 4,5-bisphosphate (PIP,) is an early in- 
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IP, ~llobilizes Ca2+ from illtracellular stores 
through the IP, receptor. resultillg in acti- 
vation of Ca2-'--dependent cellular e.r7ents 
such as contraction, secretio11, gene expres- 
sion, and synaptic plasticity (1. 2). Ca2+ 
mobilizatio~l occurs in corllplex temporal 
and spatial patterns. includi~lg Ca2- oscil- 
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lations (3)  and Ca2+ waves (4). However, elucidated, partly because of lack of knowl- 
the mechanism underlying the generation edge regarding IP, dynamics in single cells. 
of the complex patterns has not been fully Green fluorescent protein (GFP)-based 

Fig. 1. In vitro charac- A B 
terization of CFP-PHD. 
(A) Dose dependence 
of the PIP, binding of 
the PH domain wi th 
( 0 ,  dashed curve) and fw  
without (0 ,  solid curve) $, 
CFP. Average + SEM 

20 
@ ,  

(n = 3). (B) Dose-de- . 
pendent inhibition ( 0 )  0.0 

0.1 1 10 1W 0 0.5 1 1.5 2 2.5 3 of PIP, binding of the ~01.h IVY) w, (KYI 

PH domain (2 pM) 
and estimated IP, bind- 1 

D 

ing t o  the PH iomain  
( 0 )  (n = 3). (C) Inhi- 
bition of PIP, binding 
of 2 p M  CFP-PHD by 
2 p M  IP, (InsP,), inosi- 
to1 1,3,4-trisphosphate 
[lns(1,3,4)P3], and ino- 
sitol 1.3.4.5-tetrakis- 
phosphate (InsP,). (D) 
Dissociation of CFP- 
PHD from PIP,. At time 
zero, CFP-PHD was removed and IP, (400 pM) was introduced. A.U., arbitrary units. 

Fig. 2. Translocation of CFP-PHD induced by IP,. (A) Cells 
challenged with 50 p M  ATP were examined by confocal 
microscopy. Time courses of the fluorescence intensities in 
the membrane [defined by the bright peripheral region 
(widths, 1 prn) of the cells before stimulation] and cyto- 
plasmic regions are shown together with the images at  the 
t ime points indicated (arrows). Data shown are represen- 
tative of four determinations. The membrane region was 
separately verified wi th a membrane probe, FM4-64. (B) 
Dependence of the extent of cytoplasmic translocation on 
ATP concentration. AFIF,, fractional changes in fluores- 
cence intensity. (C) Effect of microinjection of IP, (final 
concentration, -80 pM)  or vehicle on cytoplasmic trans- 
location of CFP-PHD in the absence of extracellular Ca2+. 
Experiments were also performed after treatment with 
U73122 (5 pM) and ionomycin (10 pM). Data shown are 
representative of three experiments. (D) IP, dependence of 
CFP-PHD translocation. [IP31i was estimated by fluores- 
cence of rhodamine-dextran with which IP, (100 t o  500 
pM) was coinjected. (E) Effect of IP, 5-phosphatase on the 
translocation of CFP-PHD. CFP-PHD-expressing cells 
transfected with pcDNA3.1-IP, 5-phosphatase (a t o  d) and 
pcDNA3.1-EBFP or pcDNA3.1 and pcDNA3.1-EBFP (e t o  h) 
were imaged with a CCD camera. The fluorescence images 
of CFP-PHD (a and e) and BFP (b and f) are shown. (c) and 
(g) are CFP-PHD images divided by the average of 10 
consecutive images before stimulation. The time course of 
cytoplasmic translocation is shown (d and h). ATP (50 pM, 
open bar) was applied after ionomycin treatment and in 
the presence of a low extracellular Ca2+ concentration (1 
pM) t o  avoid intracellular Ca2+ elevation that might sec- 
ondarily augment PIP, hydrolysis. Similar results were ob- 
tained in cells without such treatment. Data shown are 
representative of four experiments. 

probes have been used to analyze cellular 
signaling because they have the advantage 
that they can be DNA encoded (5). Fusion 
proteins consisting of GFP and a functional 
protein domain can function as molecular 
probes when their intracellular transloca- 
tion pattern can be visualized (6). The 
GFP-tagged pleckstrin homology (PH) do- 
main of PLC-6, (GFP-PHD) is one such 
probe because it binds to PIPz within the 
plasma membrane and translocates to the 
cytoplasm after receptor stimulation (7). 
Although the translocation was thought to 
reflect a decrease in the PIP, concentration 
(7),  we obtained evidence that an increase 
in the cytoplasmic IP, concentration ([IP,],) 
causes the translocation of GFP-PHD, and 
therefore we used GFP-PHD to monitor 
spatiotemporal changes in [IP31i that under- 
lie the complex Ca2+ mobilization patterns 
within single living cells. 

We analyzed PIP, binding of the PH do- 
main of PLC-6, (8)  by a surface plasmon 
assay (9) and obtained dissociation con- 
stants (K,) of 2.8 and 2.1 pM for PH 
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domains with and without GFP tagging, 
respectively (Fig. 1A). IP, inhibited this 
binding in a dose-dependent manner, and 
the K, for IP, was 93 nM (Fig. lB), indi- 
cating that IP, binds to this PH domain with 
a -20-fold higher affinity than PIP,, con- 
sistent with previous reports (10). IP, in- 
hibited the binding of GFP-PHD to PIP, 

(Fig. 1C) with similar efficiency, indicating 
no impairment of IP, binding by GFP tag- 
ging. Inositol 1,3,4-trisphosphate and ino- 
sit01 1,3,4,5-tetrakisphosphate displaced 
little GFP-PHD from PIP, (Fig. 1C). This 
result confirms the ligand recognition spec- 
ificity of the PH domain (10). The off rate 
(koff) deduced from the dissociation curve 

Piop 3. Temporal dynamks of IP,. (A) IP ardUations 
(bostom -1 GFP-PH~ a;ansloce- a m d u ~ o r r ~ g -  .udtedby 
a.appt*.tlad3p~*w~qndm-, 
tative'data ftom at w t l  p s a a t i q d  aft? 

of G W b  trambwon 

t h o K t i n l c a w ~ s c s v v W l t h e ~ o f Q  100, 

eraase In GFPPHD 
300 pM), plotted against [G?+], M m  f 

was 5.25 s-' (Fig. ID), which indicates the 
lower limit of the actual koff because of the 
limited time resolution. Thus, IP, rapidly 
displaces GFP-PHD from PIP, with high 
affinity and specificity. We, therefore, 
studied the movement of GFP-PHD within 
living cells in conjunction with the recep- 
tor-mediated phosphatidylinositol turnover. 

GFP-PHD was expressed in Madin- 
Darby canine kidney (MDCK) epithelial 
cells (II), and localization of its fluores- 
cence was examined under a confocal mi- 
croscope (12). GFP-PHD was concentrated 
at the plasma membrane (Fig. 2A). Cells 
expressing GFP alone showed homoge- 
neous cytoplasmic and nuclear staining 
(13). Thus, GFP-PHD preferentially inter- 
acts with a plasma membrane component, 
presumably PIP,, as does full-length PLC- 
6, (14). In cells treated with adenosine 
triphosphate (ATP), fluorescence intensity 
of GFP-PHD in the cytoplasmic region in- 
creased, whereas that at the plasma mem- 
brane decreased (Fig. 2A). Removal of 
ATP restored the original fluorescence dis- 
tribution (13). Neither binding of IP, nor 
binding of PIP, in vitro changed the fluo- 
rescence intensity of GFP-PHD (13). Thus, 
the observed changes in the fluorescence 
intensity apparently reflect the transloca- 
tion of GFP-PHD and were ATP concen- 
tration dependent (Fig. 2B). Similar results 
were observed in cells stimulated with bra- 
dykinin (13). 

Microinjection of IP, induced transloca- 

m 
t .  4 

9,- I 
I .  

kM). The images normalized by the average of 10 images before stim- 
ulation are shown. The time courses of the signals from the regions, 
indicated by the numbered boxes, are plotted. Both Ca2+ and IP, waves 
start from the lower region of the cells. The upper region of the cell was 

another focus of the Ca2+ wave, which propagated downward until it reached the perinuclear region. Although the very early elevation of the IP, signal 
is difficult to see, the IP, wave is suggested by the delayed elevation in the perinuclear region. Fig. 5 (right). Mechanical stimulation of the cell 
numbered "1" with a fine glass capillary elicited an intercellular Ca2+ wave propagating to the neighboring cells. Ca2+ and IP, waves are monitored 
with fura-2 and CFP-PHD, respectively. The time courses of the signals are plotted for the cells numbered as indicated. Data shown are representative 
of four experiments. 
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tion in a dose-dependent inanner resem- 
b l ~ n g  that by agomst stirnulation (Fig. 2. C 
and D) .  U-73122. a PLC inhibitor (15) .  did 
ilot block this translocation (Fig. 2C), indi- 
cating that PIP, hydrolysis is not essential 
for this translocation. Nor was Ca2+ mobi- 
lization required. because depletion of the 
stores by ionomycin did not block the 
translocatio~l (Fig. 2C). Because IP, 
5-phosphatase participates in the degrada- 
tion of IP, (16) .  we examined the effect of 
its 01-erexpression on GFP-PHD transloca- 
tion. Translocation of GFP-PHD elicited by 
purinergic stiillulatioil was abolished in the 
IP, 5-phosphatase-expressing cells (Fig. 
2E).  indicating that an increase in [IP,], is 
necessary for the agonist-elicited transloca- 
tion. Tl~us ,  an increase in [IP,], is both 
necessary and sufficient for the traasloca- 
tioil of GFP-PHD. Moreol-er, complete ab- 
olition of the translocation by- overexpres- 
sion of IP3 5-phosphatase indicates that 
during agonist stimulation. the concentra- 
tion of free PIPZ available to GFP-PHD 
renlains either constant or greatly in excess 
of the K, of PIP, binding ( I  7 ) .  

We monitored the translocation of GFP- 
PHD to analyze changes in [IP,], associated 
with complex Ca2+ mobilization patterns. 
GFP-PHD-expressing cells were iilc~ibated 
with the Ca2+ indicator, fura-2. The negli- 
gible overlap in the excitation spectra of 
GFP and fura-2 enabled us to detect both 
Ca2- and IP, signals simultaneously. ATP 
( 1 to 3 FM) often elicited Ca2+ oscillatioils 
in >IDCK cells (18). and oscillatory trans- 
location of GFP-PHD synchronous with 
Ca2+ oscillations was observed (Fig. 3A). 
IP, oscillations have been suggested by 
measurement of [IP,], in a large population 
of cells in which Ca2- oscillations were 
synchronized by removal and restoration of 
extracellular Ca2+ (19).  although the valid- 
ity of this technique has been challenged 
(20). Our results provide evidence for IP, 
oscillations accompanying Ca2+ oscilla- 
tions at the single-cell level. 

Generation of oscillations in [IP,], is 
thought to require Ca2+-dependent activa- 
tion of PLC (19; 21). We therefore exam- 
ined the effect of i~ltracellular Ca2+ con- 
centration ([Ca2-],) on ATP-induced in- 
crease in [IP,],. \.&'hen cells were incubated 
n-it11 ionomycin or thapsigargin to deplete 
the Ca2- stores and then stimulated with 
ATP, translocation of GFP-PHD \$as ob- 
served without any change in [Ca2-I,. A 
subsequent increase in the extracellnlar 
Ca" concentration induced Ca2- influx. 
which then elicited further translocation 
(Fig. 3. B and C) .  However, the increase in 
[IP,], was transient and began to decrease. 
whereas the [Ca2+], continued to increase 
(Fig. 3B). The relation between [Ca2+], and 
trallslocation of GFP-PHD changed \\,it11 

time, and at higher [Ca2+],, a pronounced 
time-dependent inhibition was observed 
(Fig. 3C). These results indicate that Ca2+ 
has both enhancing and inhibitory effects 
on [IP,], increase. 

We analyzed spatial changes in [IP,], in 
detail during the early phase of the increase 
in [Ca2-1, accompanying intracellular Ca2- 
waves in h'IDCK cells after p~irinergic stim- 
ulation (Fig. 4). Translocation of GFP-PHD 
occurred concomitantly with Ca2+ nave 
propagation. indicating the presence of IP, 
waves. Taking into consideration the inherent 
kinetic and diffusional delay in the GFP-PHD 
signal, [Ca2-1, and [IP,], waves appeared al- 
most simultaneously. supporting the models 
in which regenerative Ca2+-mediated IP, 
production accompanies Ca2+ waves or os- 
cillations (19. 21). 

\lechanical stimulation of MDCK cells 
initiated intercellular Ca2- n-aves that spread 
toward peripheral cells (Fig. 5) (-72). Sirnnl- 
taneous imaging of GFP-PHD showed that 
the increase in [IP,], also spread in a n-ave 
pattern similar to that of the Ca2- wave. 

Our results provide insight into the mech- 
anism of generation of cornplex Ca" signals. 
Tn-o alternative n~echanisms underlying the 
complex Ca2+ mobilization pattelms have 
been proposed: Ca2--mediated positive and 
negative feedback mechanisms may control 
either the Ca2- release process itself (mech- 
anism 1 ) or IP, production (mechanism 2)  (1; 
3, 4 ) .  Our results are consistent wit11 mecha- 
nism 2. n-hich proposes the occurrence of 
oscillations in the [IP,], and IP, waves. We 
also observed Ca2--mediated enhancement 
and suppression of [IP,], increase, both of 
~vhich are postulated in mechanism 2. How- 
ever, our results do not exclude mechanism l .  
and Ca2--mediated regenerative mechanisms 
of both Ca2+ release and IP, prodnction inay 
participate cooperatively in the generation of 
complex Ca2+ signaling patterns. Regarding 
the intercellular Ca'- wave, intercellular dif- 
fusion of IP, may be also involved (23). The 
relative coiltribution of these mechanisms re- 
mains to be clarified. 
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