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for the specification of the region (8, 11, 12). 
We examined the expression of these genes 
in Lhx5 mutant embryos. At El2.5, all three 
of these genes were expressed in the hip-
pocampal anlagen in both wild-type (Fig. 4, 
A through C) and mutant (Fig. 4, F through 
H) embryos, which indicates that the hip-
pocampal precursor cells were specified after 
disruption of Lhx5. In the mutant embryos, 
the domains of Lhx2, Emx2, and Otxl expres­
sion expanded ventrally into the region of the 
telencephalic choroid plexus, and morpho­
genesis of the choroid plexus was impaired. 
Signaling molecules of the Wnt and Bmp 
families have been implicated in patterning 
the medial telencephalic wall to form the 
hippocampal anlagen and the choroid plexus, 
because these molecules are expressed at the 
border between these two morphologically 
distinctive structures (13, 14) (Fig. 4, D and 
E). In support of this idea, expression of 
Wnt5a (Fig. 41), Bmp4, and Bmp7 (Fig. 4J) 
was diminished in this specific region in Lhx5 
null mutant embiyos. 

Previous experiments have shown that 
other members of the LIM homeobox gene 
family play crucial roles in the differentiation 
of distinct cell types in various organisms 
(15-18). In mice, for example, Islet 1 is es­
sential for the differentiation of motor neu­
rons in the spinal cord (15), and Lhx3 is 
required for the differentiation of the pituitary 
cell lineages (16). More recently, it has been 
observed that Lhx3 and LhxA together control 
the axon projection of subtypes of motor 
neurons as well as their exact soma position 
in the developing spinal cord (17). Our data 
suggest that Lhx5 may play an analogous role 
in the developing forebrain. 

Defects in hippocampal development have 
been observed in mice carrying null mutations 
in a variety of genes. Functional ablation of the 
homeobox gene Emx2 (11) or Lhx2 (8) leads to 
an early arrest of hippocampal development as 
precursor cells fail to be specified or to prolif­
erate. Mutations in Reeler (5), Mdabl (19), 
Cdk5 (20), P35 (21), mdPafahlbl (22) impair 
neuronal migration, resulting in a disorganiza­
tion of cells in Amnion's horn and the dentate 
gyms. Our results show that Lhx5 is required 
for differentiation of the various types of hip­
pocampal neurons. Together, these studies re­
veal an intricate genetic program underlying the 
assembly of complex hippocampal structures. 

Expression of Lhx5 after El3.5 in the Cajal-
Retzius cells raises the possibility that the im­
pairment in hippocampal morphogenesis ob­
served in Lhx5 mutant embryos could result 
from a lack of function of those cells. The gene 
Reeler is expressed in these cells (5), in keeping 
with the possibility that this gene might be a 
downstream target of Lhx5. However, the de­
fects in morphogenesis as well as in neuronal 
differentiation of Amnion's horn and the den­
tate gyrus seen in the Lhx5 mutant embiyos are 

more severe than those of Reeler (5), Mdabl 
(19), Cdk5 (20), P35 (21), and Pafahlbl (22) 
mutants, which suggests that Lhx5 may control 
a different pathway. The Lhx5 knockout mice 
provide a model to further understand the mo­
lecular and cellular mechanisms underlying the 
formation of Amnion's horn and the dentate 
gyrus and their functions in cognition, learning, 
and memory. 
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brief burst of action potentials starting ap­
proximately 20 ms preceding saccades of a 
particular range of directions and amplitudes; 
the region defined by the end points of such 
saccades comprises the "movement field" of 
an SC neuron. For each neuron, the location 
of the movement field in space varies system­
atically with the location of the neuron in the 
SC (1-4). Many SC neurons exhibit a "pre-
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lude" of activity related to the rnetrics of an 
impending saccade up to several seconds be- 
fore the saccade is actually executed, impli- 
cating the SC in higher-level aspects of sac- 
cade planning (5-7). It is not known. how- 
ever, whether these signals play a role in 
target selection. or simply reflect motor plans 
folmed in response to selection processes 
elsewhere in the brain. 

We investigated the role of the SC in 
target selection by recording prelude cells in 
monkeys (1Macacn mulatta) trained to select 
one of two possible saccade targets contin- 
gent upon the direction of lnotion in a visual 
stimulus presented 011 a cathode ray tube 
rnonitor (Fig. 1) (8). For each SC neuron 
studied, the geometry of the display was ar- 
ranged so that one of the targets (Tl) lay 
inside the cell's movement field. while the 
other (T2) lay outside the movement field. 

We recorded the activity of 96 intermedi- 
ate and deep-layer SC neurons whose prelude 
activity was greater preceding T1 choices 
than T2 choices, permitting an experimenter 
to predict the monkey's decision several sec- 
onds before the saccade (9) .  Figure 2 illus- 
trates the responses of a predictive SC neu- 
ron; three aspects of these responses are con- 
sistent with a role in target selection. First, 
predictive activity developed during the stim- 
ulus presentation interval while the monkey 
was folmulating its judgment of rnotion di- 
rection. Second, predictive activity developed 
later and Inore gradually for low coherence 
trials than for high coherence trials, consis- 
tent with the longer psychophysical integra- 
tion tirnes required to discriminate weak mo- 
tion signals (1 0, l l ) .  Third. this cell lacked a 
saccade-locked burst. suggesting that it plays 
only a minor role in saccade execution. 

Neurons involved in target selection in 
our task may receive relatively direct sensory 
inputs concerning the direction of motion in 
the visual stimulus; the logic of the task 
dictates that such neurons should be excited 
selectively by motion flowing toward their 
movernent fields. To test for the presence of 
such inputs in the SC, we looked for direc- 
tional visual responses in blocks of trials 
when the monkey was rewarded for passive 
fixation (12). Random dot stimuli were pre- 
sented within a circular aperture surrounding 
the center of gaze; the direction of coherent 
rnotion was either toward or away from the 
rnovernent field of the SC neuron. Of the 96 
choice-predicting SC neurons, 44 yielded di- 
rectional responses: activity was significantly 
stronger when motion flowed toward the 
movement field than away from it (Mann- 
Iihitney U-test: P < 0.05). No cell was 
significantly more active when motion 
flowed away from the ~novement field. 

A possible criticism of these experiments 
is that, by force of habit, our monkeys may 
have planned saccadic eye movements co- 

vertly upon viewing the moving random dots 
even though they were not required to exe- 
cute such movements. To control for this 
possibility, we measured visual direction tun- 
ing curves for 22 neurons when the rnonkey 
was required to plan saccades to a location 
outside of the rnovernent field of the cell (Fig. 
3A). In this condition. a single saccade target 
appeared early in the trial, and visual direc- 
tion tuning curves were rneasured by present- 
ing stimuli during the overlap period while 
the monkey awaited a "go" signal before 
executing the saccade (13). Because the mon- 
key is able to plan the saccade from the 
beginning of the trial, it is unlikely that ran- 
dom dot lnotion during the overlap period 
would elicit covert saccade planning to a 
different, unrewarded location. 

Direction tuning curves measured during 
the saccade task (14) did not differ from 
those measured during passive fixation trials 
in terms of preferred direction (Wilcoxon 
signed rank test. P > 0.5); tuning width 
(0.1 > P > 0.05), or amplitude of response 
(P > 0.5). The preferred direction of the cell 
to visual rnotion rneasured in the saccade task 
(arrow. Fig. 3B) corresponded well with the 
direction of the saccades elicited by electrical 
stimulation at the same site (arrow, Fig. 3A). 
This correlation held up well across all 22 
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T 2  
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Motion stimulus -.A I 

Eye position - 
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Fig. 1. (A) Geometry of the visual display and 
(B) the  t iming of events in  the direction dis- 
crimination task. The mot ion stimulus appeared 
wi th in a circular aperture subtending 7" of  vis- 
ual angle and was usually presented at the  
center of gaze. Saccade targets were illuminat- 
ed 300  ms after the monkey acquired the fix- 
at ion point. Then, 500 t o  900  ms later, a 2000- 
ms mot ion stimulus was presented, fol lowed by 
an enforced delay period lasting 1000 t o  1500 
ms. Disappearance o f  the  fixation point cued 
the monkey t o  make a saccade. Fixation breaks 
aborted trials. Eye position was continuously 
monitored by the  scleral search coi l  technique 
(28). Horizontal and vertical eye position was 
sampled a t  a rate of 1 kHz and stored a t  a rate 
o f  250 Hz for off-line analysis. 

neurons tested (Fig. 3C, circular-circular rank 
col-relation coefficient: r = 0.77, P < 
0.0001). 

These direction-selective responses have 
not been documented previously in primate 
SC. An intriguing possibility is that; over the 
course of training, pathways between visual 
cortex and SC neurons involved with target 
selection are modified so as to mediate this 
learned association (15). Indeed. recordings 
in a monkey that had not been trained to 
associate particular directions of rnotion with 
particular saccade vectors revealed substan- 
tially fewer direction-selective SC neurons 
(5135 versus 44,'96 z-test P < 0.001) (16). 

The two groups of prelude neurons may 
represent different neural processing levels. 
one involved in target selection and the other 
in the specification of saccade parameters. 
We analyzed the time course of predictive 
activity in each group of neurons (Fig. 4) (1 7, 
18). In the direction-selective cells, predictive 
activity developed with a short latency and a 
rapid time course. suggestive of an early role 
in saccade planning. The magnitude of the 

Saccade 
Stimulus Delay . 

Time (s) 

Fig. 2. Peristimulus and perisaccade t ime his- 
tograms for the  discharge o f  a single superior 
colliculus neuron during direction discrimina- 
t i on  a t  three different stimulus coherences. 
Data f rom correct trials only are displayed (ex- 
cept at 0% coherence for which correctness is 
arbitrary). Thick and th in curves illustrate the 
mean response preceding T I  choices and T2 
choices, respectively. The le f t  half-panel of 
each p lot  is aligned on mot ion stimulus presen- 
tation. The r ight half-panels show data f rom 
the same trials aligned on  saccade initiation. 
The gap between the t w o  half-panels reflects 
the t im ing  variability between stimulus offset 
and saccade initiation. Vertical lines indicate 
the t ime o f  stimulus onset, stimulus offset, and 
saccade initiation, and the  uni t  spls is spikes 
per second. 
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predictive activity during the stimulus pre- 
sentation was strongly modulated by the mo- 
tion coherence (Spearman's r = 0.94: P < 
0.025). Thus, the activity of these cells re- 
flects not only the animal's decision, but also 
the strength of the signal upon which the 
decision is based (19, 20). Finally, these cells 
exhibited predictive activity up to 500 ms 

before the presentation of the 0% coherence 
visual stimulus (Fig. 4A, arrow; permutation 
tests: P < 0.01 at each time point) (21). This 
activity may reflect intrinsic bias states which 
can influence the animal's decision in the 
absence of strong sensory signals (22). 

Non-direction selective cells differed 
from direction-selective cells in each of these 

rnance on our task. Mays and Sparks de- 
scribed a high-level class of SC neurons 
("quasi-visual" cells) that appear to represent 
potential targets for saccadic eye movements, 
but are not linked obligatorily to execution of 
a saccade (5). Similarly, Basso and Wurtz 
described SC neurons whose activity reflects 
the probability that a saccade will be made 
into their movement fields (24). Either or 
both of these populations may overlap with 
our direction-selective neurons. 

Our data suggest that at least two levels of 
processing related to saccade planning are 
present within the SC. Some cells possess a 
constellation of properties indicative of a high- 
level role in decision formation and target se- 
lection, while other cells are more dhxtly 
linked to saccade execution. These two profiles 
appear to lie at opposite ends of a continuum 
rather than representing two distinct, nonover- 
lapping populations of cells. Previous studies 
have identified neurons in the lateral intrapari- 
etal area (LIP) and prefiontal cortex that carry 
signals appropriate for mediating decision for- 
mation, target selection, or saccade planning 
(15, 19, 20, 2S27). It will be important to 
determine how these formal processes are dis- 
tributed among the several brain areas and how 
neuronal populations in these areas interact to 
accomplish these tasks. 

respects. Predictive activity developed with a 
longer latency and slower time course (per- 
mutation tests: P < 0.025 and P < 0.01, 
respectively) (23), and was not modulated by 
stimulus coherence (Spearman's r = 0.26: 
P > 0.25). In addition, these cells did not 
exhibit predictive activity in the interval pre- 
ceding the stimulus presentation (permutation 
tests: P > 0.1 at each time point). 

Analysis of perisaccadic neural activity 
suggests that the non-direction selective cells 

A Saccade 
target I Stimulus 

' saccade vector 

are more closely involved with saccade exe- 
cution. For saccades directed toward the tar- 
get in the movement field, perisaccadic firing 
rates (recorded during an interval from 50 ms 
before until 25 ms after the saccade initiation) 
were almost three times greater in non-direc- 
tion selective cells than in direction-selective 
cells (1 16 spikesls versus 40 spikesls; Mann- 
Whitney U-test: P < 0.0001). 

The direction-selective cells we describe 
appear appropriate for implementing the as- 
sociation between motion stimuli and saccade 
vectors that is necessary for correct perfor- References and Notes 
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Fig. 4. Ideal observer analysis on pooled data 
from (A) direction-selective neurons (n = 44) 
and (B) non-direction selective neurons (n = 
52). Trials are aligned on the presentation of 
the motion stimulus (times 0 through 2 in the 
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sponds t o  motion coherence. 
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RAFT1 (rapamycin and FKBP12 target 1; also called FRAP or mTOR) is a member 
of the ATM (ataxia telangiectasia mutated)-related family of proteins and 
functions as the in vivo mediator of the effects of the immunosuppressant 
rapamycin and as an important regulator of messenger RNA translation. In 
mammalian cells RAFT1 interacted wi th  gephyrin, a widely expressed protein 
necessary for the clustering of glycine receptors at  the cell membrane of 
neurons. RAFT1 mutants that could not associate w i th  gephyrin failed t o  signal 
t o  downstream molecules, including the p70 ribosomal 56 kinase and the elF-4E 
binding protein, 4E-BPI. The interaction wi th  gephyrin ascribes a function t o  the 
large amino-terminal region of an ATM-related protein and reveals a role in 
signal transduction for the clustering protein gephyrin. 

Proteins of the ATM family participate in cell 
cycle progression by linking signals from 
growth factor receptors and internal check- 
points to the cell cycle machinery. These cell 
cycle regulators are members of the kinase 
superfamily and include the gene product of 
the ataxia telangiectasia locus (ATM), the 
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catalytic subunit of the DNA-activated pro- 
tein kinase (DNA-PKcs), RAFTl or FRAP, 
and the products of the yeast genes TORI, 
TOR2, and TELl (I). 

RAFTl and its yeast homologs, the TOR 
proteins, are the in vivo targets for the com- 
plex of rapamycin with its intracellular recep- 
tor, FKBP12. Rapamycin is a potent im- 
munosuppressant that prevents progression 
through the G, phase of the cell cycle in 
various cell types, including T lymphocytes 
and budding yeast (2). The effects of rapa- 
mycin point to a role for RAFTl and the 
TORS in cell cycle regulation, and increasing 
evidence indicates that they participate in 
mitogen-stimulated signaling pathways that 
control mRNA translation. In mammalian 
cells RAFTl controls the rapamycin-sensi- 
tive phosphorylation of at least two transla- 
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