
dynamics of dissolved nutrient patches. We 
have yet to identify the frequency of occur- 
rence and magnitude spectra of such patches 
in specific microbial food webs. They un- 
doubtedly represent interesting ecological 
nicl~es for bacteria, and they will also con- 
tribute much to our understanding of the flow 
of nutrients and energy in aquatic ecosystems 
if they prove to be major pathways. 
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Prevention of Population Cycles 
bv Parasite Removal 

Peter J. Hudson," Andy P. Dobson, Dave Newborn 

The regular cyclic fluctuations in vertebrate numbers have intrigued scientists 
for more than 70 years, and yet the cause of such cycles has not been clearly 
demonstrated. Red grouse populations in Britain exhibit cyclic fluctuations in  
abundance, with periodic crashes. The hypothesis that these fluctuations are 
caused by the impact of a nematode parasite on host fecundity was tested by 
experimentally reducing parasite burdens in grouse. Treatment of the grouse 
population prevented population crashes, demonstrating that parasites were 
the cause of the cyclic fluctuations. 

Mathematical nlodels have sho\vn that a densi- 
ty-dependent response acting with a time delay 
can generate population cycles between natural 
enemies and their prey ( I ) .  Indeed, trophic in- 
teractions rather than intrinsic mechanisms are 
now considered by many to be the principal 
cause of cycles in microtine rodents (2), snow- 
shoe hares (3), and red grouse (4). The defini- 
tive test of these hypotheses is to stop popula- 
tion cycles by manipulating the ca~~sative 
mechanism. Here, we report on a long-term. 
large-scale. replicated field experiment that 
examined the capacity of parasites to cause 
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cycles. The impact of the parasitic nematode 
Trichosti.ongyltls tenliis on individual red 
grouse (Lagoptls lagoytls scoticus) was re- 
duced through the application of an anthel- 
mintic before a cyclic population crash in 
northern England. 

Extensive investigations of hunting records 
from 175 individually managed grouse popula- 
tions. coupled with detailed intensive demo- 
graphic studies, have s h o ~ m  that 77% of red 
grouse populations exhibit significant cyclic 
fluctuations with a period between 4 and 8 
years (Fig. 1A) (4). Population growth rate is 
negatively related to the intensity of worm in- 
fection in adult grouse (Fig. lB), and poor 
breeding production is correlated with worm 
intensity (Fig. lC), so that population crashes 
are associated with high parasite intensities. 
Analyses of parasite-host models predict that 
parasitic helminths can cause population cycles 
when they induce a reduction in host fecundity 
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that is large in relation to the impact of the though hunters tend to stop shooting when au- 
parasite on host s u ~ i v a l  (5). and experimental tumn densities are <30 birds km-" (Fig. 1A). 
studies have demonstrated that poor breeding in Bag records are not influenced by ally l~mting 
female grouse is caused by the nematode Ti-i- restrictions, and in this system they provide a 
chostl.on,rr?~ltcs tenclis (6). Extensive demo- reasonable index of ab~u~dance and a very good 
graphic studies have shown a clear relation qualitative desciiptioil of the obsei~led periodic 
between bag records and count data (4), al- crashes. 

Parasite intensity in adult grouse 
10 i 

Fig. 1. (Left) Population dynamics o f  red grouse I 

as illustrated from the detailed studies on one I - . ~ ~ ~ ~ ~ ~ ~  
population in northern England. (A) Numbers of l a 8 i  1988 1S.89 l ~ l :  951 1552 1593 11194 1995 19QG 

red grouse shot (solid line) and numbers counted 
per square kilometer (dashed line) before harvesting. (B) Plot of annual population growth rate [r, = (In 
N,,, - In N,)] against mean log worm intensity in breeding adult grouse (r = -0.676; 95% bootstrap 
confidence limits 0.901 t o  0.216). (C) Plot of breeding mortality [log maximum clutch size (12) - log 
mean brood size at 6 weeks] against mean log worm intensity (r = 0.641; 95% bootstrap confidence 
limits 0.287 t o  0.816). Fig. 2. (right) Population changes of red grouse, as represented through bag 
records in (A) the two  control sites, (B) the t w o  populations wi th a single treatment each, and (C) the 
t w o  populations wi th two  treatments each. Asterisks represent the years of treatment when worm 
burdens in adult grouse were reduced. 

Table 1. Population parameters for T. tenuis and red grouse. The derivation of the parameter estimates 
is discussed elsewhere (4-6). NA, not applicable. 

Long-teim data from six independently 
managed grouse moors were used to predict 
cyclic crashes in grouse numbers in 1989 and 
again in 1993. In 1989, we worked with 
keepers and caught and orally treated grouse 
with the anthelmintic Levamisole hydrochlo- 
ride in four of these six populations. In 1993, 
this was repeated on two of the populations. 
providing data from a total of six popula- 
tioas-two that had been treated to stop two 
population crashes, two that had been treated 
to stop one population crash, and two untreat- 
ed control populations. During each treat- 
ment year. grouse were caught at night in 
early spring \vhen most of the birds had 
foimed mating pairs. Birds were dazzled with 
a strong quartz-halogen lamp while roosting, 
caught in a net, and treated wit11 Levamisole 
l~ydrocl~loride. Each bird was marlied with a 
reflective tag that could be seen on subse- 
quent catching nights. It was possible for a 
team of two people to catch and treat more 
than 100 birds in a single night. Radio tag- 
ging and subsequent inonitoring showed that 
tagged and treated birds remained on their 
tei~itories and had improved breeding. Birds 
were caught at random from accessible parts 
of the grouse habitat. Females were caught in 
preference to males to ensure the greatest im- 
pact of parasite removal on breeding produc- 
tion. Catching and treatment continued fiom 
when the snow melted to when females began 
laying eggs. Overall, between 1000 and 3000 
grouse were caught and treated from each pop- 
ulation. Depending on the size of each grouse 
population, our estimates showed that we treat- 
ed between 15 and 50% of the adult breeding - 
population. A sample of treated birds was shot 
from each population, and the inteilsities of 
worm infection were compared with those of 
untreated birds to confilm that treatment re- 
duced the \volm burdens. The numbers of har- 
vested grouse were recorded during the subse- 
quent hullting season. 

In each of the six treatments, the applica- 
tion of Levamisole hydrochloride reduced the 
tendency of the population to exhibit cyclic 
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Parameter Symbol Estimated value 

Grouse fecundity (year-') a 1.8 
b 1.05 Grouse mortality (year-') 

Parasite fecundity (year-') X 11 
Adult worm mortality (year-') I*. 1 .O 0.8-1.2 5 
Mortality of free-living stages Y 6.5-13 

(year-') 
Parasite pathogenicity (worm-' a 3 x  l o - 4  

year-') 
Parasite reduction in host fecundity 6 5 x l o - 4  NA 1 0 -~-, 

(worm-' y e a r 1 )  0 5 10 15 20 
Aggregation of parasites in host k 1 .O 0.5-1.8 Time (years) 
Density-dependent reduction in 1 0.004 

grouse fecundity and survival 
NA 

Fig. 3. The influence of treatment on  the cy- 

Increase in worm mortality in c 52 (life expectancy, 1 week) NA cling o f  grouse populations. Changes in  the 

treated birds number of grouse are shown in relation t o  the 

Transmission rate (larvae-' host-' P 0.1 1 0,06-0,15 proport ion o f  grouse treated. N o  treatment, 

year-') dashed line; 5%, dot ted line; l o % ,  thick solid 
line; and 20%, th in  solid line. 



population crashes (7).  Reducing the parasite 
burdens reduced the variance in the popula- 
tion growth rate and produced an apparent 
reduction in the decline of the treated popu- 
lations (Fig. 2). This experiment illustrated 
that parasitic nematodes were necessary for 
the cyclic declines in abundance that were 
observed in grouse populations. In both pop- 
ulations that were treated twice (Fig. 2C) and 
in one of the populations that was treated 
once (Fig. 2B), the effect of the treatment was 
apparent in comparison with the controls, 
although the results are less clear in the se- 
maining population, which was treated just 
once. We suspect this was because the keeper 
treated a relatively lo\i, proportion of the 
grouse population (-15%). Even with these 
results, the findings were still significant and 
demonsbate that parasites played a key role 
in causing population cycles. 

To determine the effectiveness of the treat- 
ment, we calculated the proportion of the pop- 
ulation that should be treated in order to prevent 
a population crash. We addressed this problem 
with a modified form of the general macropara- 
site model (5) that incosporates the experimen- 
tal procedures of direct oral heatment (8) (Table 
1). Individuals in the model were classified as 
either untreated (with natural levels of infec- 
tion) or tseated (with no parasites). Treatnlent of 
a proportion (TI) of the population was triggered 
in the model whenever the growth rate of the 
parasite population increased (becomes posi- 
tive). The wonns in the treated grouse suffered 
an increased mortality rate, so their life expect- 
ancy was <1 \i,eek, \i,hereas the remaining 
untseated birds (1 - p) continued to release 
infective stages into the environment, which 
infected both treated and untreated hosts. Nu- 
merical solutions of the model's dynamics 
sho\i,ed that treahnent of >20% of the hosts 
\i7as sufficient to prevent the cyclic crashes in 
host density (Fig. 3) and provided a good ex- 
planation for all the results of the experiment. 

The results ftom this study show that pop- 
ulation cycles in red grouse are the result of a 
single trophic interaction between a parasite 
and its host. Combined \i,ith the modified 
macroparasite model: these results show that 
parasites were both sufficient and necessary 
in causing cycles in these populations. They 
also sho\i, that intrinsic mechanisms do not 
need to be evoked as a cause of cyclic fluc- 
h~atiolls in grouse abundance (9). Previous 
studies have undertaken detailed experiments 
at a lower spatial scale. For example, a fac- 
torial manipulation of the food and predators 
of snowshoe hares on 1-km2 plots indicated 
that at least three trophic levels of interaction 
are involved in producing cycles (3). Never- 
theless, to the best of our knowledge, this is 
the first time that manipulations of a mecha- 
nism in a cyclic species have demonstrated 
the cause of population cycles on a large 
scale. 
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Interleukin-1 3: Central Mediator 
of Allergic Asthma 

Marsha Wills-Karp,* Jackie Luyimbazi, Xueying Xu, 
Brian Schofield, Tamlyn Y. Neben, Christopher 1. Karp, 

Debra D. Donaldson 

The worldwide incidence, morbidity, and mortality of allergic asthma are in- 
creasing. The pathophysiological features of allergic asthma are thought to  
result from the aberrant expansion of CD4- T cells producing the type 2 
cytokines interleukin-4 (IL-4) and IL-5, although a necessary role for these 
cytokines in allergic asthma has not been demonstrable. The type 2 cytokine 
IL-13, which shares a receptor component and signaling pathways with IL-4, was 
found to  be necessary and sufficient for the expression of allergic asthma. IL-13 
induces the pathophysiological features of asthma in a manner that is inde- 
pendent of immunoglobulin E and eosinophils. Thus, IL-13 is critical to allergen- 
induced asthma but operates through mechanisms other than those that are 
classically implicated in allergic responses. 

Recent decades have brought dramatic in- 
creases in the prevalence and severity of al- 
lergic asthma. In the United States, 15 million 
people are currently thought to suffer from 
the disorder (I). Allergic asthma is character- 
ized by airway hypeisesponsiveness (AHR) 
to a variety of specific and nonspecific stim- 
uli, chronic pulmonary eosinophilia, elevated 
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serum immunoglobulin E (IgE), and exces- 
sive aii~vay mucus production (2). The patho- 
physiology of asthma is thought to be medi- 
ated by CD4+ T lymphocytes producing a 
type 2 cytokine profile: (i) CD4+ T cells are 
necessary for the induction of allergic asthma 
in murille models; (ii) CD4+ T cells produc- 
ing type 2 cytokines undergo expansion in 
these models and in patients with allergic 
asthma; and (iii) the amount of type 2 cyto- 
kines is increased in the airway tissues of 
asthmatics and animal models (3-5). The cir- 
cumstantial evidence for the importance of 
IL-4 and IL-5, which are paradigmatic type 2 
cytokines, has been compelling (6-8). Ho\i7- 
ever, although an antibody-mediated block- 
ade of IL-4 during allergen sensitization ab- 
lates the development of allergic asthma, a 
similar blockade of IL-4 before or during an 
antigen challenge inhibits neither allergic in- 
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