
Abrupt Climate Oscillations 
During the Last Deglaciation in 

Central North America 

tion of these two factors and the assumption 
that water temperature closely tracks air tem- 
perature lead to an estimate of a coefficient of 
0.36%0 per degree celsius between S180 in 
carbonate and air temperature. In the late 
glacial and early Holocene: the climate in the 
Great Lakes region resembled that of a high- 
latitude region. A strong temperature gradient 

Zicheng Yu* and Ulrich Eicher likely prevailed immediately south of the 
continental ice sheets (16). The climatic re- 

Evidence from stable isotopes and a variety of proxies from two  Ontario lakes gime during that time may have imposed a 
demonstrate that many of the late glacial-to-early Holocene events that are strong link between S180 and temperature, so 
well known from the North Atlantic seaboard, such as the Cerzensee-Killarney the variation of temperatures along this 
Oscillation (also known as the Intra-Allererd Cold Period), Younger Dryas, and strong gradient might be sensitively reflected 
Preboreal Oscillation, also occurred in central North America. These results thus in S180 values of atmospheric precipitation. 
imply that climatic forcing acted in the same manner in both regions and that The S180 results from mollusk shells (Fig. 
atmospheric circulation played an important role in the propagation of these 2A) and from Charn encrustations and bulk 
events. marl (17, 18) at Twiss Marl Pond show a 

negative shift of 1.3%0 at 10.920 14C yr B.P. 
The transition from the last glacial maximum Three cores of sediment from Crawford Lake (at 490 cm) and a positive shift of up to 2%0 
to the present interglacial (Holocene) has (43"28'N, 79'57%') and one from Twiss at -10,000 yr B.P. (at 390 cm). The 
great importance in understanding how Marl Pond (informal name: 43"27'N, more negative intervening interval indicates a 
Earth's climate system can abnlptly switch 79'57'W) were analyzed for carbonate stable cold period corresponding with the YD event. 
from one state to another. The most detailed isotopes (S180 and S13C), lithology, elemen- A minor negative excursion of 0.4%0 at 9600 
records of this transition-the late glacial tal geochemistry, pollen, plant macrofossils, yr B.P. (at 370 to 380 cm) may correlate 
period-are from the North Atlantic region, and freshwater gastropods. The S180 values with the Preboreal Oscillation (PB) (1-5, 7). 
which appears to have acted as either a trig- from bulk marl and mollusk shells were used This minor oscillation is also indicated by the 
ger or an amplifier of late glacial climate as proxy for temperature (11). Other proxy recurrence of Pzcen pollen at Twiss Marl 
events. This transition [- 13.000 to 9000 14C data were used to infer lake and watershed Pond and more clearly at Crawford Lake and 
years before the present (yr B.P.)] was char- conditions during climatic changes (Fig. 2) by a distinct minerogenic layer (Fig. 2B). 
acterized by several broad-scale climatic 0s- (12). Chronology was controlled by four Before the YD interval, another slight nega- 
cillations in the North Atlantic region (1-6). AMS 14C dates on terrestrial plant macrofos- tive excursion of S180 at 500 to 510 cm in 
Isotopic records from Europe (4, 7, 8) and sils and by correlation with dated regional mollusk shells may correlate with the Ger- 
Greenland ice cores (2, 3) reveal a late glacial pollen sequences (13). zensee Oscillation (G) in central Europe (7, 
climate sequence in which the warm Bolling- The 180/160 ratios (S180) in authigenic 4), the Killarney Oscillation (K) in Atlantic 
Allerod (BOA) was followed by the cold lake carbonates are a proxy of continental Canada (6), and the Intra-Allerad Cold Peri- 
Younger Dryas (YD) at -11,000 to 10:000 climate and depend on the isotopic composi- od (IACP) in Greenland (1-3). It is also 
14C yr B.P. and then by the warm Holocene. tion of lake water and on water temperature. indicated by a peak for elemental A l .  
In continental Sorth America. however. cli- The isotopic fractionation between calcite The S180 profile of core SC (Fig. 2C) 
mate proxy data provide mixed and limited and water varies by -0 24 per mil (%o) per from the shallow basin at Crawford Lake 
evidence for these climate oscillations (9) ,  degree celsius of temperature (14). A strong shows the BOA warming at -12,500 14C yr 
and this sequence was not seen in isotopic positive link between S180 in atmospheric B.P. (minimum 1%0 positive shift in S180 
records (10). Establishing the geographic ex- precipitation and mean annual surface tem- from 378.5 to 374 cm); the BOA warm period 
tent, sequence, and magnitude of these cli- perature exists in the high and mid-latitude from -12,300 to 11,000 yr B.P. (from 
mate oscillations is essential for understand- regions; the average coefficient is about 374 to 361 cm); a pre-YD cooling event, 
ing the mechanisms and causes of abrupt 0.6%0 per degree celsius (15). The combina- corresponding with GIKIIACP oscillations, 
short-term climatic changes. 

Here we describe several sedimentary 
records from hvo small lakes (Fig. l), which 
show the late glacial and early Holocene 
climate changes. The two sites from separate 
basins eliminate local hydrology as the cause 
of observed changes. The basins are predom- 
inately situated in Ordovician and Silurian 
dolomites covered by thin glacial deposits. 
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Fig. 1. Map showing 
Locations of Crawford 
Lake and Twiss Marl 
Pond at the edge of 
Ontario's Niagara Es- 
carpment, Canada (A), 
and coring locations 
(DC, SC, and BC) at 
Crawford Lake (B). 
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shortly before 11,000 '"C yr B.P. (at 364 c111: 
-0.8%0 negative excursion); the YD cold 
period from 11,000 to 10.000 ''C yr B.P. 
(from 361 to 350 cin: 1.5% negative excur- 
sion); the Holocelle warming at 10,000 yr 
B.P. (at 35 1 cm: - 1.5940 positive shift); and 
the PB at 9650 "C yr B.P. (at 344 cin: 0.4960 
negative excursion). Cores DC (Fig. 2B) and 
BC (Fig. 2D) at Crawford Lake s11o.i~ similar 
patterns but ivith a thinner record and lower 
temporal resolution. 

These obsen-ed pattelms callnot be attrib- 
uted to local hydrological effects, because (i) 
siinilar pattelns are seen at the tivo sites. (ii) 
dissolution of dolomite bedrock (with a S1'O 
value of -6.46960) as suggested by elemental 
geochemist~y and lithology analysis (Fig. 2) 
( IS )  carnlot accourlt for the observed pat- 
terns, and (iii) the SISO records from both 
sites correlate well with the 81S0 records 
from Greeilland ice cores (Fig. 3) and ceiltral 
European lake sediments. For the carbonate 
SIsO-air temperature correlation of 0.36%0 
per degree celsius, the 1960 decrease in SISO 
at the beginning of the YD event could irnply 
a 3°C decrease in meall annual air tempera- 
ture, and the 2960 illcrease at the begiilniilg of 
the Holocene could imply a 6°C increase. 
This relation may; however, not be valid for 
loilg-term climatic change. For example, we 
have no independent data to evaluate the 
evaporative enrichment of 8'" (19). The 
SISO values suggest that telnperature or pre- 
cipitation (or both) may have fluctuated dur- 
ing the YD event, as also seen in European 
(7)  and Greerllaild isotopic records (Fig. 3). 
The YD event appears to have been cold at 
the beginning and slightly wasnler in the 
middle. The variations during the YD interval 
are also indicated by elelnelltal concentra- 
tions and sediment composition at t n o  study 
sites. These new records are comparable in 
sequence and relative nlagnitude with records 
from ice cores (2, 3) ,  and lnarirle ( I )  and 
European lacustrine sediments (4, 7, 8). 

At Tn-iss Marl Pond and Cra\vford Lake. 
the YD cooling is indicated by a negative 
excursion in SISO values together with a 
persisterlce of and slight increase in shrub and 
herb pollen, a slight decrease of pollerl con- 
centration, decreased carbonate, and in- 

Fig. 2. Combined diagrams of proxy climate 
data recorded in the late glacial and early Ho- 
locene sediments at Twiss Marl Pond (A) and in 
core DC (B), core SC (C), and core BC (D) at 
Crawford Lake. PB, Preboreal Oscillation; C/K/ 
IACP, Cerzensee (7),  Killarney (6 ) ,  and Intra- 
A l l e r ~ d  Cold Period (1); V-PDB, Vienna Pee Dee 
belemnite; PAZ, pollen assemblage zones. A t  
Twiss Marl Pond, the 6180 was measured on 
shells o f  t w o  mollusk species, Pisidium ferrug- 
ineum (lower thick line) and Valvata sincera 
(upper th in line). A more detailed discussion is 
given elsewhere (18). All  data w i l l  be available 
a t  www.ngdc.noaa.gov/paleo/paleo.html. 
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Fig. 3. Correlation of r 
Greenland ice core m 
[Greenland Ice Sheet 2 6' - 

~f " 
Project 2 (GISPZ)] 6180 2 6 
(left bar-curve) (2) and 4" C? Greenland Summit Crawford Lake gG 'F 

GlSP2 Core cores SC & BC< 
Crawford Lake (core 7504 L 

SC, heavy curve; core ~ O O O  - 
BC, dashed curve) car- 
bonate 6180 profiles 9000 . 

on calendar- and 14C- 
year time scales, re- ,o,oo, - 
spectively. The calen- 
dar ages from GlSP2 ,,,,,, _ 
are from annual ice lay- 
er counting, and the , ,,,,,_ Younger Dryas I4C ages from Craw- 
ford Lake are based on 
AMS I4C dates at the '3'000 - - 
two study sites and on 
correlation with the '4'000 

- 

dated regional pollen 
sequence (13). At 
Crawford Lake, the se- 6 j80 X. (v-SMOW) 6 j80 50 (V.PDB) 

quence of climatic os- 
cillations includes the BOA warming, G/K/IACP, YD, PB, and HE-5 (ZZ), and possibly OD (older Dryas). 
HE-5 here is dated at approximately 7500 I4C yr B.P., based on the major Pinus-to-Tsuga-Fagus pollen 
transition and is equivalent to the cooling event at Greenland Summit at 8200 calendar years B.P. (20). 
All these oscillations recorded at Crawford Lake are about one-third to one-half the amplitude of the 
Greenland record, and P B  and HE-5 are half the amplitude of the YD and of G/K/IACP at both locations. 

creased erosion-derived elements, all of 
which suggest more openings in forests and 
accelerated soil erosion under a cold cli- 
mate. The lack of strong upland vegetation- 
al evidence for the YD at the two study 
sites is attributed to an insensitive response 
of the nonecotonal vegetation at that time 
( 1 8 ) .  A decrease in calcite precipitation or 
an increase in eroded minerogenic matter 

close match of the S L 8 0  records at the two 
sites presented in this study and at other sites 
in the North Atlantic region indicates that the 
climatic forcing acted in the same manner in 
both the North Atlantic region and interior 
North America and that the climatic signals 
were probably carried through the atino- 
sphere over the Northern Hemisphere. 

during the YD cold interval has been re- 
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The Percolation Phase 
Transition in Sea Ice 

K. M. Golden," S. F. Ackley, V. I. Lytle 

Sea ice exhibits a marked transition in its fluid transport properties at a critical 
brine volume fraction p ,  of about 5 percent, or temperature T, of about -5°C 
for salinity of 5 parts per thousand. For temperatures warmer than T,, brine 
carrying heat and nutrients can move through the ice, whereas for colder 
temperatures the ice is impermeable. This transition plays a key role in the 
geophysics, biology, and remote sensing of sea ice. Percolation theory can be 
used to understand this critical behavior of transport in sea ice. The similarity 
of sea ice microstructure to compressed powders is used to theoretically predict 
p ,  of about 5 percent. 

Sea ice is a complex, composite inaterial 
co~lsisting of pure ice with brine and air 
inclusions. whose size and geoinetly depend 
on the ice cl-ystal structure. as well as the 
tenlperature and bulk salinity. It is distin- 
guished from many other porous composites, 
such as sandstones or bone, in that its micro- 
sti-ucture and bulk material propei-ties vary 
dranlatically over a small temperature range. 
For brine volume ftactions p below a critical 
value p, - 5%; colum~lar sea ice is effective- 
ly imper~neable to fluid transport, whereas 
forp above y, (>5%); brine or sea water can 
move through the ice. The relation of brine 
volume to temperature T and salinity S ( I )  
implies pc corresponds to a critical tempera- 
ture Tc ;= -5°C for S = 5 ppt; we refer to this 
critical behavior as the "law of fives." Per- 
haps the most direct observations of this are 
that the time rate of change of sea ice salinity 
clSldt due to gravity drainage vanishes for 
brine volumes below 5% (2, 3) and that the 
permeability of thin sea ice decreases by 
more than two orders of magnitude as the 
surface temperature is lowered, in a small 
critical region arouild -5°C (4). 

Brine transpoit is fiindamental to such pro- 
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cesses as sea ice production tlu-ough freezing of 
flooded ice s~rfaces; sea ice heat fluxes, and 
nutrient replenishment for sea ice algal c o ~ m -  
nities. as well as being an iillportant factor for 
remote sensing. However, the basic tra~lsitio~l 
controlling brine transpoi-t has received little 
attention. Percolation theo~y (5, 6 )  has been 
developed to analyze the propei-ties of materials 
where connectedness of a given component 
determines the bulk behavior. We show that it 
provides a natural fraine~vork to understand the 
critical behavior of sea ice. In particular, we 
apply a conlpressed powder percolation inodel 
to sea ice microstluchire that explains the law 
of fives; the obse~ved behavior (4) of the fluid 
pelmeability in the critical temperature regime. 
as well as data 011 surface flooding collected 
recently 011 sea ice in the Weddell Sea and East 
Antarctic regions. 

It was observed in the Arctic (7) that a mow 
stoim and its resultant loading on a sea ice layer 
can induce a coinplete upward flushi~lg of the 
brine networl<, In the Antarctic, it was obsel-ired 
that the fieezing of a surface slush layer. with 
resultant brine drainage, induced convectio11 
within the ice, \vhereby rejected dense brine is 
replaced by nutrient-rich sea water fro111 the 
upper ocean (8), fileling autumn blooms of 
algae in second-year ice (9). Duiillg the autunm 
freeze-up, this process provided about 70% of 
the salt flux into the upper ocean and increased 
the total heat flux through the overlying ice and 
snow cover. The proliferation and growth of sea 
ice organisills is favored by penneable ice: 
which allows nutrient replenishment (1 0, 1 I). 
For remote sensing, surface flooding and sub- 

sequent freezing call affect micro~~ave back- 
scatter eon1 sea ice (12, 13). and connectedness 
of the brine inclusions affects the pe~mittivit) of 
sea ice (14, 15). As yet another example. it was 
observed in the k c t i c  that there was about a 
20-day time lag between the start of the spring 
snow melt and the occurrence of freshwater 
input into the mixed layer (1 6, 17). Presumably, 
pait of t h ~ s  lag was the time it took for the ice 
sheet to walm to above the critical temperatuse 
to allow drainage out of the ice (16). 

Percolation theoiy (5, 6) has been used to 
successfi~lly model a broad array of disordered 
materials and processes. The simplest form of 
the lattice percolation illode1 (6) is defined as 
follo\vs. Consider the d-din~e~lsional integer lat- 
tice Z' and the square (or cubic) network of 
bonds joining nearest neighbor lattice sites. To 
each bond: with probability y ;  0 5 p 5 1: we 
assign a 1; meaning it is open, and with prob- 
abilit) 1 - y  we assign a 0. meaning it is closed. 
Grou~s  of coiulected oDen bonds are called 
open clusters, and the size of a cluster is just the 
number of open bonds it co~ltains. In the per- 
colation model, there is a critical probabilit) yc, 
0 < p, < 1: called the percolation threshold: at 
\vhich the average cluster size ~ ( p )  diverges 
and an infinite cluster appears. so that the open 
bonds percolate. 111 two dimensions, pc = 0.5; 
in three dimensions,pc ;= 0.25. Fory > y,, the 
infinite cluster density P,(p) exhibits power 
law behavior near the threshold, P,(p) - (p  - 
pc)" where p is the percolation critical expo- 
nent, p 5 1. This model deals only with the 
geometrical aspects of connectedness in disor- 
dered media. yet we are interested in the trans- 
port propei-ties as well Then we cons~der a 
random resistor netrvork, where the bonds are 
assigned the coilductivities 1 and h 2 0 with 
probabilities y and 1 - y .  With h = 0; for y < 
y,,, the effective conductivit) u(p) = 0; where- 
as near the threshold withp > pc. o(p) exhibits 
power law behavior u(p) - (y y , ) ' ,  where t is 
the conductivity critical exponent. kith 1 5 t 5 

2 in d = 2.3 (18). Analogously. we may con- 
sider a random pipe network \vith effective 
fluid pelmeability ~ ( p )  exhibiting similar be- 
havior ~ ( p )  - (y - y,)", where e is the perme- 
ability critical exponent, with e = t .  Critical 
exponents for lattice models are generally be- 
lieved to exhibit universality, meaning that they 
depend o111y on dimension and not on the type 
of lattice, although continumn models can ex- 
hibit non~iniversal behavior: with exponent val- 
ues different from the lattice case. t > 2 in d = 

3, ande  # t .  
If the above lattice inodel is applied to sea 

ice: \vhere the open bonds represent brine and 
the closed bonds represent ice, then yc would be 
about 25% in d = 3, which is much larger than 
the obsel-ired 5%. Even continuum models. 
such as ellipsoidal brine incl~isions raildon~ly 
distributed in an ice host (a commonly used 
model for sea ice): exhibit critical volume fiac- 
tions in the 20 to 40% range (19). Instead. 
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