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amino acids of TRF1, which encompass the 
acidic domain (Fie. 1B). These results indi- 

Polymerase a t  Human cate that the acid; doiiain of TRFl is nec- 
essary and sufficient for interaction with 
tankyrase. This domain is absent from TRF2, 

Telomeres and a two-hybrid analysis (6) indicated that 
tankyrase does not interact with TRF2. 

Susan Smith, lzabela Ciriat, Anja Schmitt," Titia de Langei- Three obsen~ations suggested that taidcyrase 
was a member of the ankynn family, a group of 

Tankyrase,  a p r o t e i n  with homology to  a n k y r i n s  a n d  t o  t h e  c a t a l y t i c  d o m a i n  of structural proteins that link integral membrane 
p o l y ( a d e n o s i n e  d iphospha te - r i bose )  p o l y m e r a s e  (PARP), w a s  i d e n t i f i e d  a n d  proteins to the underlying cytoskeleton (10). 
l o ca l i zed  to h u m a n  te l omeres .  Tanky rase  b i n d s  to  t h e  t e l o m e r i c  p r o t e i n  T R F l  First, tankyrase, like all ankynns, contained 24 
( t e l o m e r i c  r e p e a t  binding fac to r - I ) ,  a n e g a t i v e  r e g u l a t o r  of t e l o m e r e  l e n g t h  copies of the ANK motif, whereas other ANK 
m a i n t e n a n c e .  L ike  anky r i ns ,  t a n k y r a s e  c o n t a i n s  24 a n k y r i n  r e p e a t s  in a d o m a i n  repeat-containing proteins typically have 4 to 8 
r espons ib le  for i t s  i n t e r a c t i o n  with TRFI .  R e c o m b i n a n t  t a n k y r a s e  w a s  found to  repeats. Second, the ANK repeats in kznkysase 
h a v e  PARP a c t i v i t y  in vitro, with both T R F l  a n d  t a n k y r a s e  f u n c t i o n i n g  as  and the ankyrins shared characteristic sequence 
a c c e p t o r s  for adenos ine  d i p h o s p h a t e  (ADP)- r ibosy la t ion .  A D P - r i b o s y l a t i o n  of features, such as the presence of a hydrophobic 
T R F l  d i m i n i s h e d  i t s  a b i l i t y  t o  bind to  t e l o m e r i c  DNA in vitro, s u g g e s t i n g  t h a t  amino acid at position 3 and an Asn or a Asp at 
t e l o m e r e  f u n c t i o n  in h u m a n  ce l ls  i s  r e g u l a t e d  by po l y (ADP- r i bosy l )a t i on .  position 29 (Fig. 2A). Third, the fifth ANK 

copy in taidcyrase was notably shorter than all 
Human telomere function requires two telo- karyotes (9). We therefore named the protein others, a featurA also obsel-i~ed in ankynns. 
mere-specific DNA binding proteins, TRFl and tankyrase (IRF1-interacting, &rin-yelated Apart from the ANK repeat domain, however, 
TRF2 ( I ,  2). TRF2 protects chromosome ends ADP- ribose polymerase). there was no detectable homology between 
(3),  and TRFl regulates telomere length (4). The tankyrase-interacting domain in tankylase and ankyiins. The ankyrin domain of 
Overexpression of TRFl in a telomerase-ex- TRFl was identified by two-hybrid analysis taidcyrase is flanked at the NH2-terminus by a 
pressing cell line leads to progressive telomere (6) with TRlL-12 (Fig. 1A). The tankyrase region canying homopolymeric His, Ser, and 
shortening, whereas inhibition of TRFl increas- fragment, consisting of 10 ANK repeats, in- Pro tracts and at the COOH-terminus by a 
es telomere length (4). TRFl does not control teracted with full-length TRFl but not with a sterile alpha module (SAM) motif (Fig. 2B), 
the expression of telomerase itself but is TRFl mutant lacking the NH2-terminal acid- which is postulated to function in protein-pro- 
thought to act in cis by inhibiting telomerase at ic domain of TRFl (Fig. 1B). Consistent with tein interaction (11). 
telomere termini. this obsei~ation, significant interaction oc- The most striking feature of tankyrase is the 

To identify additional teloinere-associated curred with the isolated NH2-terminal 68 homology to PARP. In response to DNA dam- 
proteins, we used a yeast two-hybrid screen 
with human TRFl as bait (5, 6 ) .  This screen 
yielded hvo overlapping partial cDNAs Fig. 1. Domain struc- A 
(TRl L-4 and TRlL-12) (Fig. 1A). A full-length tu re  o f  t a n k ~ r a s e  and 

testis cDNA isolated with TRlL-4 encoded an twO-hybrid 
with TRF1. (A) Sche- 

Tankyrase 
open reading frame of 1327 amino acids, pre- matic representation of 181 1023 1088 1176 1327 

dicting a protein of 142 kD (Fig. 1A) (7). The structure of 
central domain of this protein contains 24 tankyrase and TRF1. 

ankyrin (ANK) repeats, a 33-amino acid motif Lines be low the  sche- 
TRl  L4 

that mediates protein-protein interactions (8), mat ic  indicate inserts B 
and its COOH-terminal region has homology to the twO-hybrid PIas- LexA-TRFl GAD GAD-TR1 L IZ  

mids (TRlL-4  and the catalytic domain of PAW, a highly con- TR1L-12) and a plasmid FUII length &+I 
439 0.0 4.5 

senled nuclear enzyine found in most eu- used to generate re- A68.C m 1 m s 8  12.0 50.4 

comb inan t  protein f o r  AN-66 /L~XA/--FS/ Dimerilation 1 . 439 0.0 0.0 
ant ibody product ion 

The Rockefeller University, 1230 York Avenue, New (ANK2). HPS, region LexA control /LexA/-- 0.6 0.4 
York, NY 10021, USA. containing homopoly- 

*present address: E~~~~~~~ ~ ~ l ~ ~ ~ l ~ ~  ~ i ~ l ~ ~ ~  ~ ~ b ~ .  meric runs o f  His, Pro, and Ser; ANK, ankyrin-related domain; SAM, homology t o  t he  sterile alpha motif; 

ratory-~eide[berg, Meyerhofstrasse 1, D-69117, Hei- PARP, homology t o  t he  catalytic domain  o f  PARP; Myb,  Myb- type D N A  binding motif; DIE, acidic 

delberg, Germany. domain  rich in Glu  and Asp. (B) Two-hybrid assay for  t he  tankyrase interact ion domain  in TRF1. 

?To whom correspondence should be addressed. E -  P-Galactosidase concentrations (Miller units; average o f  three independent transformations) were 
mail: delange@rockvax.rockefeller.edu measured for  strains expressing t he  indicated fusion proteins (6). CAD, GAL4 activation domain. 
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d o m r ~ n 1 n a ~ . ~ ~ ~ ~ ~ k 0 l ~ @ T 9 9 9 9 ) . 7 h a ~ ~ ~ a r r ~ m & j r P M l j k c d ~  
@MaWyMtc,d,r,f, ~ m , o n d n . L k A a t c s a a m s a n m d u h e l t w . A s t ~ ~ ~ a m E c n r d i n  
~ A f r o m ~ ~ , d d J p h h r b d l i p h z h e r i a  thxkr12). 

age, PARP catalyzes the formation of poly- tankyrase is not just a PARP isofom but a telomeres of mitotic chromosomes, we used 
(ADP-ribose) onto a protein acceptor using nic- substantially different protein. indirect imrnunofluorescence analysis of meta- 
otinamide adenine dinucleotide (NAD+) as a Northern (RNA) blot analysis revealed that phase chromosomes to determine whether 
substrate (9). The catalytic domain of PARP multiple tankyrase mRNAs (13) were ubiqui- TRFl positions tankyrase at chromosome ends. 
consists of secondary structure units (multiple P tously expressed in human tissues, with the Metaphase spreads were dually probed with 
strands and one cu helix) (Fig. 2C) that fonn a highest amounts detectable in testis (Fig. 3A). anti-tankyrase and antiserum to TRFl (16). The 
cavity known as the NAD+-binding fold, a TRFl and TRF2 transcripts show a similar results revealed that, like TRF1, tankyrase is 
tertiary structure that is also present in all ADP- ubiquitous expression pattern (I, 2). A single located at or near the physical ends of meta- 
ribosylating toxins (12). Tankyrase has 28 to protein of -142 kD was detected by tankyrase phase chromosomes (Fig. 3C). Most of the 
30% amino acid identity with the catalytic immunoblot analysis of HeLa cells and rat tes- tankyrase protein colocalized with TRFl, as 
domains of human and Drosophila PAW tis, and this protein comigrated with the in vitro evidenced by the merge of the two signals. 
(Fig. 2C), including all critical amino acids translation product of tankyrase cDNA (Fig. These data suggest that tankyrase is a compo- 
implicated in NAD+ binding and catalysis. 3B) (14). A survey of mammalian cell lines nent of the human telomeric complex. 
Other conserved aspects of the previously suggested that tankyrase protein is ubiquitously To investigate whether tankyrase has PARP 
defined PARPs such as their automodifica- expressed (Is), consistent with the RNA data. activity, we tested baculovirus-derived recom- 
tion and DNA binding domains (9) are not Because TRFl is predominantly associated binant protein in an assay that measures the 
represented in tankyrase, indicating that with telomeres in human cells, including the addition of radiolabeled ADP-ribose to protein 

Fig. 3. Expression and localization of tankyrase. (A) Northern blot of 
polyadenylated RNAs from human tissues (Clontech) probed with a 
tankyrase cDNA (TRlL-4) (73). Asterisks indicate tankyrase tran- 
scripts. The blot was rehybridized with a p-actin probe, and a double 
exposure of both signals is shown. Molecular size markers are indi- 
cated on the left in kilobases. (B) lmmunoblot of the following protein 
samples: salt-extracted nuclear pellet from rat testis (Testis), whole- 
cell lysates from HeLa cells (HeLa), and products of a coupled in vitro 

transcription-translation (IVTL) of full-length tankyrase cDNA, probed 
with the indicated antibodies (74). Molecular size markers are indi- 
cated on the left in kilodaltons. (C) Colocalization of tankyrase and 
TRFl at telomeres. Indirect immunofluorescence analysis of swollen, 
formaldehyde-fixed metaphase spreads from HeLa cells stained with 
anti-tankyrase (green) and anti-TRF1 (red) (76). "Merge" represents 
superimposition of the red and green images. DAPl staining of DNA is 
shown in blue. Scale bar, 5 p,m. 

www.sciencemag.org SCIENCE VOL 282 20 NOVEMBER 1998 



acceptors with [32P]NAD+ used as a substrate 
(1 7). Incubation of tankyrase in the presence of 
1.3 pM radiolabeled NAD+ produced 32P-la- 
beled species that comigrated with tankyrase, 
suggesting that tankyrase has the ability to 
ADP-ribosylate itself (Fig. 4A). Higher concen- 
trations of NAD+ (0.04 to 1 mM) yielded much 
larger products, likely reflecting the addition of 
poly(ADP-ribose) to tankyrase. The generation 
of ADP-ribosylated tankyrase depended on the 
concentration of tankyrase (Fig. 4A), was elim- 
inated by heat inactivation of the enzyme, and 
could be irnrnunoprecipitated with anti- 
tadcyme (Fig. 4B) (18), indicating that the 
PARP activity was intrinsic to tankyrase. 

Tankyrase also has the ability to modify 
TRF1. At low NAD+ concentration (1.3 pM), 
the ADP-ribosylated products cornigrated with 
TRF 1, whereas at higher NAD+ concentrations 
(0.04 to 1 mM), the slower and variable mobil- 
ity of the labeled products suggested poly- 
(ADP-ribosy1)ation of TRFl (Fig. 4A). Inspec- 
tion of Coomassie bluestained SDS gels did 
not reveal a larger molecular weight species 

Fig. 4. Tankyrase is a PARP 
that inhibits TRFl in vitro. A 
(A) Tankyrase ADP-ribosy- 
lates itself and TRF1. 
Tankyrase was allowed to kD 
modify itself and TRFl in 200 ' 

the presence of [3ZP]NAD-, 11 6 , 
and the products were an- 97 * 
alyzed by Coomassie blue 66 a 

staining (Left) and autora- 
diography (right) of SDS- 45s  
PACE gels (77). Reactions 
contained the proteins in- 
dicated above the Lanes 31 - 
at the following amounts: 
TRFl at 4 p g  (+) and 

and - 
eac- 
FM 
hree 
en >uv- 
sing 
eled 
d I 
P-ri- 

upon tankyrase-mediated TRFl modification, 
indicating that only a small fraction of the 
TRFl in the reactions was modified even at 
high tankyrase concentrations. Thus, tankyrase 
is likely to function as a processive PARP under 
these conditions. TRF2 is not a substrate for 
modification in vitro, as expected from the lack 
of protein-protein interaction between TRF2 
and tankyrase. 

To confirm that the labeling reaction with 
tankyrase was analogous to PARP-catalyzed 
poly(ADP-ribosyl)ation, we added the specif- 
ic PARP inhibitor 3-aminobenzamide (3AB) 
to the reactions (19). Modification of both 
TRFl and tankyrase was strongly inhibited 
by 3AB (Fig. 4C). Furthermore, modified 
tankyrase and TRFl reacted with a monoclo- 
nal antibody to poly(ADP-ribose) (Fig. 4D) 
(17), consistent with their carrying ADP- 
ribose polymers. These data indicate that 
tankyrase is a genuine PAW with at least two 
specific substrates, TRFl and tankyrase itself. 

The effect of tankyrase on the telomeric 
DNA binding activity of TRFl was determined 

by an in vitro gel-shift assay with the use of a 
double-stranded array of [TTAGGG],, as a 
probe (20). TRFl binds to DNA as a ho- 
modirner, and several such dimers can occupy 
one [TTAGGG],, molecule at high TRFl con- 
centrations (6) (Fig. 4E). When TRFl was in- 
cubated with baculovirus-derived tankyrase in 
the absence of NAD+, a slight stimulation of 
the TRFl DNA binding activity occurred, re- 
sulting in the formation of higher order com- 
plexes, especially at high tankyrase concentra- 
tions. However, this stimulation of TRFl also 
occurred with total insect cell protein and was 
therefore unlikely to represent a specific effect 
of tankyrase. A similar nonspecific enhance- 
ment of TRFl was previously reported for 
p-casein and several other proteins (1). In con- 
trast, when NAD+ was included in the TRF1- 
tankyrase mixtures, a reduction of the TRFl 
activity resulted (Fig. 4E). This effect was de- 
pendent on the addition of active tankyrase 
(Fig. 4E), consistent with ADP-ribosylation be- 
ing the cause of the TRFl inhibition. 

The identification of a telomeric PARP rais- 

0 %0 + + + + A 4 + + + + Tankyrase B C2~C41b 
+ + + +  - -  - + + + + + + +  TRFl &e4w9 
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as indicated and incub, 
in a PARP assay with cts were detected by a I 
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rnented with 1 p M  or 1 mM unlabeled NAD' (triangle). Reactions for the right p 
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es the possibility that the function of human 
telomeres is regulated by this type of protein 
modification. Because ADP-ribosylation usual­
ly inhibits protein activity (21), we favor the 
view that tankyrase is a negative regulator of 
another factor acting at telomeres. Although the 
in vivo targets of tankyrase remain to be estab­
lished, TRF1 is a strong candidate, because it is 
a substrate for tankyrase in vitro and ADP-
ribosylation inhibits the ability of TRF1 to bind 
to telomeric DNA. However, the PARP activity 
of tankyrase could also be directed at other 
telomere-associated factors, including telomer-
ase, and ADP-ribosylation might enhance rath­
er than inhibit the activity of the target protein 
(22). In vivo functional analysis will be re­
quired to determine whether tankyrase acts pos­
itively or negatively in the regulation of telo­
mere length. PARPs have previously been im­
plicated in the cellular response to DNA dam­
age (9). The presence of a PARP activity at 
telomeres may also hint at a role for tankyrase 
in the protection of telomeres from inappropri­
ate DNA damage processing activities. 
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