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Fossils discovered in Lower Cretaceous (Aptian) rocks in the Tenere Desert of 
central Niger provide new information about spinosaurids, a peculiar group of 
piscivorous theropod dinosaurs. The remains, which represent a new genus and 
species, reveal the extreme elongation and transverse compression of the 
spinosaurid snout. The postcranial bones include blade-shaped vertebral spines 
that form a low sail over the hips. Phylogenetic analysis suggests that the 
enlarged thumb claw and robust forelimb evolved during the Jurassic, before 
the elongated snout and other fish-eating adaptations in the skull. The close 
phylogenetic relationship between the new African spinosaurid and Baryonyx 
from Europe provides evidence of dispersal across the Tethys seaway during the 
Early Cretaceous. 

In 1912, a series of extremely high-spined 
vertebrae and a peculiar lower jaw with sub- 
conical crocodilelike teeth were discovered in 
the Bahariya oasis in central Egypt (I).  These 
fossils provided evidence that a large, pis- 
civorous, sail-backed predator roamed the 
northern shores of Africa during the Late 
Cretaceous (Cenomanian). This partial skel- 
eton, Spinosauius ae,gptiacus, was de- 
stroyed during World War 11, and few re- 
mains that are attributable to this taxon have 
since been recovered in these horizons (2-5). 

Additional bones of Spinosaurzls-like 
predators have been discovered in Loner 
Cretaceous (Aptian or Albian) deposits in 
Niger and Brazil and in somewhat older (Bar- 
reinian) rocks in Europe. The Nigerien fossils 
include peculiar arched snout tips and enor- 
mous manual unguals (6-8); the Brazilian 
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remains consist of a single partial skull, Ii~ri- 
tator (9, 10); and the European fossils, Bag>- 
onjx, include the first relatively complete 
spinosaurid skeleton (1 1-13). 

Fossils were recovered recently from the 
Elrhaz Foimation in Niger (Fig. 1). These 
Aptian-age rocks consist predominantly of 
fluvial channel deposits and are exposed in 
low outcrops amid dune fields in the Tenere 
Desei-t (6, 14). The fossils found here include 
plant, invertebrate, and vertebrate remains; 
the vertebrate remains consist mainly of dis- 
ai-ticulated bones and teeth in basal channel 
lag deposits. Dinosaurs are represented by at 
least three theropods, two sauropods, and 
three ori~ithopods (15). 

The newly discovered fossils include a 
partial skull and skeleton of a new spinosau- 
rid, St~chonzimus tenerensis gen. nov. sp. nov. 
( l a ,  which can be distinguished from other 
spinosaurids (1 7). A1 articulated snout (Fig. 
2A and B) reveals its remarkably long, low, 
and narrow proportions. The elongation of the 
snout is the result of the hypeih-ophy of both the 
premaxilla and the anterior ramus of the inax- 
illa. The preinaxillae, which fuse early in 
growth, each contain alveoli for seven teeth. 
The subcoilical crowns are slightly recui~ed 
and have fine marginal serrations and textured 
enamel surfaces (Fig. 2E). The external nares 
are retracted posterior to the preinaxillary 
teeth (Fig. 2, A and D), as in Bnryonys (14). 
The unusually long, plate-shaped anteroine- 
dial processes of the maxillae (18) are firmly 
held by the preinaxillae (Fig. 2B). The medial 
wall of the antorbital fossa is confined to the 
anterior end of the antorbital fenestra, and a 
simple conical pneun~atocoel extends anteri- 

orly into the body of the maxilla. As in 
Bayonyx. the quadrate foramen is very large, 
and the distal condyles are very broad. 

The new cranial bones indicate that the 
spinosaurid skull is considerably lower, nar- 
rower, and longer (Fig. 2D) than previously 
reconstnlcted (13, 191. In dorsal view, the 
snout is extremely narrow (Fig. 2C) In ven- 
tral view, the maxillae meet along the mid- - 
line, displacing the internal nares and palatal 
complex (pteiygoid, palatine, and ectopteq- 
goid) toward the rear of the skull. 

In the aostcranial skeleton. the cervical 
series arches upward (18) and has prominent 
epipophyses for muscle attachments. The 
neural spines increase in height rapidly in the 
middorsal vertebrae, forming a low median 
sail that is deepest over the sacral vertebrae 
(Fig. 3). This vertebral morphology, incipi- 
ently developed in Baiyonyx (13): is distinct 

Fig. 1. Mid-Cretaceous paleogeography and 
principal exposures of fossiliferous beds in the 
region of Cadoufaoua, Niger. (A) Mid-Creta- 
ceous (Aptian, 120 million years ago) paleogeo- 
graphic map (Mollweide projection) with lati- 
tude and longitude lines spaced at 30' intervals 
(longitude greater than 120" is not shown) 
(31). White cross, fossil locality. (B) Maps 
showing Niger, the exposures of the CAD 5 
beds (72) (white, above; black, below), and the 
location of the holotypic skeleton of Suchomi- 
mus tenerensis (16"25'N, g07'E). 
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from that in Spinosaurus (I), in which the 
much deeper sail arches to an apex over the 
middorsal vertebrae (Fig. 4B). 

Complete pectoral and pelvic bones show a 
deep subrectangular acromion on the scapula 
and a low obturator flange on the ischium. The 
distal end of the pubis is distinctive. Although 
there is a short, sagittal, symphyseal flange that 
may correspond with the pubic foot in other 
theropods, the flattened subrectangular distal 
end of the pubis faces anteriorly, perpendicular 
to the sagittal plane (Fig. 3). The f o r e m  is 
remarkably stout, and manual digit 111 is robust, 
as seen in the size of metacarpal I11 and the third 
ungual (Fig. 3 and Table 1). The femur has a 

Fig. 2. Skull of the spi- 
nosaurid Suchomimus 
tenerensis. Articulated 
premaxillae and maxil- 
lae (MNN CDF501) in 
left (A) lateral (re- 
versed from right) and 
(B) ventral views. Skull 
reconstruction of 5. te- 
nerensis based on re- 
mains from Niger and 
Baryonyx walkeri in 
(C) dorsal and (D) lat- 
eral views. Shaded 

blade-shaped anterior trochanter, and the as- 
cending process of the astragalus is taller than 
that in Allosaurus (20). 

Phylogenetic analysis (21, 22) links spi- 
nosaurids with torvosaurids (23) and places 
this clade (Spinosauroidea) as the sister group 
to Neotetanurae (Fig. 4A and Table 2). The 
derived features that are shared between spi- 
nosaurids and torvosaurids, including the 
short forearm and the enlarged manual digit I 
ungual (22), appear to have evolved by the 
Middle Jurassic (Fig. 4B). A hook-shaped 
coracoid characterizes Suchominus, Bary- 
onyx, and neotetanurans but not to~osaurids 
(24). Thus, the hook-shaped coracoid either 

evolved convergently in neotetanurans and 
spinosaurids or originated as a tetanuran sy- 
napomorphy that was subsequently lost in 
torvosaurids (21, 22). 

Spinosaurids are characterized by numer- 
ous derived features, many of which are re- 
lated to piscivory [including an unusually 
long snout with a long secondary palate; a 
terminal rosette of teeth in the upper and 
lower jaws (25); subcylindrical, spaced 
crowns; posteriorly displaced external nares; 
ventrally positioned basipterygoid articula- 
tion; and other features (8, 13, 22)]. Our 
analysis suggests that spinosaurids can be 
divided into two clades, the Baryonychinae 

antfo 
I anife 

I 

m rnl l  m14 

pm7 m2 - m22 
\ I I 

portions are not cur- pm 
rently known in any 
spinosaurid. (E) Scan- 
ning electron micro- 
graph of the crown 
margin of an isolated 
tooth of 5, tenerensis 
showing the small mar- 
ginal serrations and tex- C t u r d  enamel Scale bar 
in (A) through (D), 10 
cm; in (E), 1 mm. Abbre- 
viations a, angular; aj, 
articular surface for ju- 
gal; an, articular surface 
for nasal; antfe, antor- 
bital fenestra; antfo, 
antorbital fossa; ar, 
articular; bo, basioc- 
cipital; bs, basisphe- D 
noid; d, dentary; emf, 
external mandibular 
fenestra; en, external 
naris; eo, exoccipital; 
f, frontal; j, jugal; 1, 
lacrimal; lh, lacrimal 
horn; m, maxilla; n, 
nasal; nh, nasal horn; 
p, parietal; pm, pre- pml 
maxilla; po, postorbit- dl 
al; popr, paroccipital 
process; pra, preart- 
icular; prf, prefrontal; 
pt, pterygoid; q, quad- 
rate; qf, quadrate fora- 
men; q j, quadratojugal; 
sa, surangular; saf, 
surangular foramen; so, 
supraoccipital; sq, squa- 
mosal; stf, supratempo- 
rial fossa; and 1 through 
17, tooth positions. 
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Fig. 3. Skeletal recon- 
struction of the spi- 
nosaurid Suchomimus 
tenerensis showing 
preserved bones (to- 
ta l  length is -1 1 m). 
Height o f  human sil- 
houette, 1.68 m (5 
feet 6 inches); scale 
bar, 1 m.  

Spinosauroidea c 
0 

Tetanurae \Y Neotheropoda + ,. 
146 

Fig. 4. Phylogenetic and temporal relationships among 
spinosauroids. (A) Single most-parsimonious cladogram 

157 

based on  phylogenetic analysis o f  45 characters (Table 2) 
(47 steps: consistency index, 0.98; retention index, 0.98) 178 

(32). The cladoeram remains stable three steos above 

1, t h i  robust' forelimb w k h  sickle-shaped t h i m b  c l a i  I 2 ILH 

L ------- J 
I 

Spinosauroidea \ 
h i n i m u m  lengthT (B) Phylogram based on  the ciadogram, 
recorded temporal ranges, and a recent t ime  scale (33). O n  
the r ieht is deoicted the seauential evolution o f  (in circles) 

among ancestral spinosauroids; 2, the  elongate piscivo- I 235 
rous snout w i t h  terminal  rosette, posteriorly displaced 
in ternal  and external nares, and depressed basipterygoid art iculat ion amon 
ancestral spinosaurids; 3, spaced and nearly straight crowns in  spinosaurines; an 
4, hypertrophied neural spines i n  Spinosaurus. Body icons show the  relat ive siz 
o f  t h e  holotypic  skeletons o f  Baryonyx, Suchomimus, and Spinosaurus. 

Table 1. Length measurements (millimeters) and ratios in Suchomimus tenerensis (MNN CDF500), 
Baiyonyx walker; (13),  and Allosaurus fragilis (20). Unguals are measured perpendicular t o  the articular 
end. Question mark indicates lack of preservation; I, II, and Ill are unguals of manual digits I, II, 
and Ill, respectively. 

Bone Suchomimus Baiyonyx Allosaurus 

Humerus 
Radius 
Metacarpal Ill 
I 
II 
1 1 1  
Femur 
Tibia 

Radiusihumerus 
liradius 
11/1 
111/1 
Tibiaifemur 

Lengths 
483* 

225 
? 

173* 
? 

120X 
? 
? 

Ratios 
0.47 
0.77 
? 
0.69 
? 

*This measurement was taken by the authors and differs slightly from that reported previously (73) 

and the Spinosaurinae (26). which diverged 
before the Barremian (Fig. 4B). The bary- 
onychines Stlchornintls and Ba~yonyx are dis- 
tinct (16, 27) but closely related, as evidenced 
by several derived features that include the 
small size and increased number o f  dental7 
teeth posterior to the terminal rosette and the 
deeply keeled anterior dorsal vertebrae (22). 
Many other similarities between these two 
taxa are ambiguous because they are not pre- 
served in other spinosaurids. The spinosau- 
sines Iuritatou and Spinosauuus are united on 
the basis o f  the straight unserrated crowns, 
the small first premaxillary tooth (4,  8), and 
the increased spacing o f  the teeth in the upper 
and lower jaws (8, 13, 22) (Fig. 4B). The 
posterior displacement of  the external nares 
in Ii.i.itatou (9)  and the deep sail in Spinosaic- 
YLIS  (Fig. 4B) may eventually characterize the 
Spinosaurinae. but these features are current- 
ly laown in only one member. 
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Table 2. Character-state matr ix for t w o  outgroups (Ceratosauria and Neotetanurae), six ingroups, and 45 characters (22) used in a phylogenetic analysis o f  
spinosauroids (Fig. 4A). The holotypic specimens o f  Angaturama and lrr i tator were scored as one taxon (Irritator). X, unknown as a result o f  transformation; ?, 
no t  preserved. 

Characters 
Taxa 

10 20 30 40 

Ceratosauria 
Neotetanurae 
Eustreptospondylus 
Ton/osaurus 
Baryonyx 
Suchomimus 
Irritator 
Spinosaurus 

00000 
00000 
I l l ? ?  
11111 
11111 
11111 
I l ? ? ?  
I ? ? ? ?  

00010 
0001 1 
OOOO? 
00000 
11121 
11121 
O???? 
O???? 

000X0 
000X0 
OOOXl 
OOOXl 
OOOO? 
0000X 
1111X 
1111? 

00000 
00000 
11111 
11111 
?O??O 
O??OO 
O???? 
? ? ? ? ?  

Before the discovery o f  Strclzol?zirntrs, the 
geographic distribution and relationships o f  spi- 
nosaurids matched the general pattell1 o f  conti- 
nental fragmentation during the latter half o f  the 
Mesozoic and thus could be explained by large- 
scale vicariance. The split between the noithem 
Baryolzj:~ and the southern spinosauines, in 
this hypotl~esis, could be attributed to the open- 
ing o f  the Tethyan seaway behveen Laurasia 
and Gondwanaland: and the divergence among 
spinosauines could be the result o f  the subse- 
quent opening o f  the Atlantic Ocean between 
South America and Afi-ica. The discovery o f  
Szlclzonzinztrs oil Afiica in the mid-Cretaceous, 
however, complicates this scenario. Its closest 
relative is the European Bai:,ion~?\- rather than 
the Afiican Spi~zosatli~cs-a pattern o f  relation- 
ships that is inconsisteilt with the large-scale 
sequence of  continental rifting described above. 

One biogeographic hypothesis accounts 
most parsimoniously for the distribution o f  the 
four spinosauiids (28), assuming that we have 
correctly asceitained their phylogenetic rela- 
tionshlps and accept the rifting sequence be- 
tween the continental areas outlined above. Ini- 
tially, spinosauiids may have had a distribution 
across Pangaea that was split by the opening o f  
the Tethys; baryonychines evolved to the noit11 
(Europe, or Laurasia), and spinosauiines 
evolved on the southern landmass (South 
Arneiica and Africa, or Gondwanaland). A sin- 
gle dispersal event from Europe to Afiica dur- 
ing the Early Cretaceous would account for the 
presence o f  S~lcl?ol?zinzus in Afiica. Alternative 
scenarios involve additional dispersal or extinc- 
tion events to account for recorded disnibu- 
tions. The phylogenetic and biogeographc re- 
lationships o f  Szrcizonzii?ztls and other spinosau- 
lids provide furtl~er evidence o f  dispersal across 
the Tethyail seaway during the Early Creta- 
ceous (21, 29). 
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illary-maxillary articulation, form: scarf or butt joint (0); 
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anterior t o  (1) the anterior margin of the maxilla; 14, 
paradental laminae:,present (0); absent (1): 15, lacrimal 
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(0); large (1); 17, midcrown cross section: elliptical (0); 
circular (1); 18, crown striations: absent (0); present (1); 
19, premaxillary tooth count: 3 t o  4 (0); 6 t o  7 (1); 20, 
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(1): 31, humeral deltopectoral crest, orientation of apex: 
anterior (0); lateral (1); 32, humeral internal tuberosity, 
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Ultrastable Mesostructured 
Silica Vesicles 

Seong Su Kim, Wenzhong Zhang, Thomas J. Pinnavaia" 

A family of mesoporous molecular sieves (denoted MSU-G) with vesiclelike 
hierarchical structures and unprecedented thermal (1000°C) and hydrothermal 
stabilities (more than 150 hours at 100°C) associated with high SiO, cross- 
linking was prepared through a supramolecular assembly pathway that relies 
on hydrogen bonding between electrically neutral gemini surfactants of the 
type C,H2,+,NH(CH2),NH2 and silica precursors derived from tetraethyl- 
orthosilicate. The vesicle shells are constructed of one or more undulated silica 
sheets that are about 3 nanometers thick with mesopores (average diameters 
from 2.7 to  4.0 nanometers) running both parallel and orthogonal to the silica 
sheets, which makes the framework structure bicontinuous and highly acces- 
sible. Catalytic metal ion centers [for example, Ti(IV) and Al(III)] have been 
incorporated into the framework with the retention of hierarchical structure. 

Substantial progress has been made recently in 
extending the supramolecular assembly of me- 
sostructured inorganic framework sbuctures to 
include hierarchical forms with a variety of 
particle shapes (1-3). Mesoporous metal oxide 
molecular sieves with vesiclellke morphologies 
are of interest as potential catalysts and sor- 
bents, in part because the mesostructured shells 
and inhinsic textural pores of the vesicles 
should efficiently transport guest species to 
framework binding sites. However, all vesicle- 
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like mesostructures reported to date had shells 
of undesirable thickness More important, like 
many mesoporous molecular sieves with con- 
ventional particle morphologies, the framework 
structures defin~ng the vesicle shells were lack- 
ing in sbuctural stability. For instance. a vesic- 
ular aluminophosphate with mesoscale d spac- 
ing and surface patterns that mimicked diatom 
&d radiolarian skeletons collapsed to AlP0,- 
cristobalite with a complete loss of the hierar- 
chical patterns at 300°C (4). Also, vesiclelike 
silicic acid polymers that were structured by a 
didodecyldimethylammonium bromde tem- 
plate lost their hierarchical structures when 
washed with alcohols (5) Macroscopic hollow 
spheres of mesoporous MCM-41 (2, 6 )  have 
been prepared from oil-in-water emulsions, but 
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