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Inass function of the brown dwarfsigiant 
planets; we need to co~lduct inore compre- 
hensive surveys for both types of (isolated 
and companion) ELL-YSOs. It is also iinpor- 
tant (26) to fill the gap between the very 
young brown dwarfs at several hundred as- 
trono~nical units from their co~npanions de- 
scribed in this paper and the close (0.5 to 10 
astronomical units) extrasolar giant planets 
and brown dwarfs around nearby stars recent- 
ly discovered (27) 
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Ages of Prehistoric Earthquakes 
Revealed by Cosmogenic 

Chlorine936 in a Bedrock Fault 
Scarp a t  Hebgen Lake 

Marek Zreda and Jay S. Noller 

Cosmogenic chlorine-36 reveals dates of the multiple prehistoric earthquakes 
that have produced a scarp on the Hebgen Lake fault. Apparent chlorine-36 ages 
are stratigraphically correct, follow a predicted theoretical pattern, and produce 
geologically reasonable model ages of 24, 20, 7.0, 2.6, 1.7, and 0.4 thousand 
years ago. This result demonstrates the feasibility of using cosmogenic chlorine- 
36 t o  extract paleoearthquake records from bedrock fault scarps. 

Verification of long-term earthqual<e models 
with field observatio~ls requires records that 
contain multiple, well-dated eal-thqual<es. 
However. such paleoseislnic records are rare 
because landforlns and sediilleilts that record 
faulti~lg are difficult to identify and are easily 
buried or eroded; coalmonly, evidence of 
earlier ealthquakes is obscured by later ones 
(1) .  Bedrock fault scarps are the best evi- 
dence of past earthqual<es. They are clearly 
associated with a particular fault, they fre- 
quently record inultiple eal-thqualtes, and they 
tend to remain uninodified because of their 
resistance to erosioa. A inajor past disadvan- 
tage of bedrock fault scarps is that they have 
not been datable by nuinerical techniques 
with adequate precisioil and accuracy (2 ) .  
Here, we describe an approach to dating pre- 
historic earthquakes based oil the buildup of 
cosinogenic 'TI in bedrock scarps exposed 
during surface faulting. and discuss its appli- 
cation to a limestoae scarp on the Hebgen 
Lake fault (3, 4); Moiltaila (Fig. 1) .  The 
technique measures how long the different. 

episodically offset parts of the scalp have 
been exposed to cosmic radiation. 

Cos~nogeilic is produced by cosmic- 
ray neutroils and inuons that interact with 
39K, "'Ca, and 35Cl in materials in the top 
few meters of Earth's ciust (5-7). Because 
the production rate of j6Cl (7, 8)  and its 
distribution below the surface (9, 10) are 
kao~vn. the concentration of cosinogenic 36Cl 
can be used to calculate how long a surface 
has been exposed to cos~nic radiation, that is. 
to deteimine its surface exposure age. In the 
case of a fault scarp, the cosrnogenic 36Cl 
exposure age is the time since the scalp face 
was suddeilly exposed during a large surface- 
faulting earthquake. 

Before faultiag, only a small a~nouilt of 
cosrnoge~lic j6Cl acc~~mulates below the sur- 
face because of shielding by the overlying 
rocks. In limestones, this subsurface produc- 
tion is domi~lated by spallation of "Ca at 
depths of <3 m and by negative lnuon cap- 
ture by 'OCa below that depth (11).  At a depth 
of 2 In; the total production rate due to spal- 
lation and negative lnuon capture decreases 
to <lo% of that at the surface. This inherited 
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fault scarp, and thus the age of the earth- 
quake. In a scarp representing multiple earth- 
quakes, then, concentrations of 36Cl will 
gradually increase from a minimum at the 
bottom of the face and change abruptly at 
places representing different slip events (Fig. 
2). A sufficient number of samples must be 
collected to resolve this spatial and temporal 
pattern of accumulated 36Cl. 

We examined a scarp in limestone of the 
Middle Cambrian Meagher Formation (12) 
on the Hebgen Lake fault. The last large 
earthquake (1959, M, = 7.5) (3) produced 
surface ruptures 34 km long with vertical 
offsets of up to 6.5 m. On a >12-m-high fault 
scarp in limestone bedrock, we identified the 
2.1-m-high 1959 face and older, progressive- 
ly more weathered faces toward the top. We 
collected 21 samples, every -0.5 m, from 
0.5 m to >10 m above the bottom of the 

Fig. 1. Location of the bedrock scarp that was 
dated using cosmogenic 36Cl (PC, Precambrian; 
P, Paleozoic; M, Mesozoic; Q, Quaternary). Thick 
line shows the 1959 surface rupture (solid line, 
Hebgen Lake fault; dashed line, other faults). 
The coordinates at the bottom of the scarp are 
44.834ON, 248.723'E, 2027 m above sea level. 

youngest pre- 1959 scarp. In addition, we col- 
lected six samples from the freshly exposed 
1959 face. The samples were collected, pro- 
cessed, and analyzed using standard methods 
(13), and apparent 36Cl ages were calculated 
(14). 

Apparent 36Cl ages (those not corrected 
for 36Cl accumulation below the surface) in- 
crease from near zero at the bottom of the 
scarp to 37,000 years ago (37 ka) at the top 
(Fig. 3A) (15). With one exception, these 
ages are in correct stratigraphic order. They 
form a pattern similar to that predicted by our 
conceptual model (Fig. 2), with six different 
sections that correspond to faces exposed by 
separate earthquakes. These sections have 
been recognized in the field on the basis of 
surface characteristics: smoothness, preserva- 
tion of polish (slickensides), degree of sur- 

Fig. 2. Accumulation of cosmogenic 36Cl in a 
hypothetical fault scarp formed by three earth- 
quakes that occurred at 15, 8, and 2 ka. Cos- 
mogenic 36CL ages form a characteristic pat- 
tern: exponential decrease with depth within 
each section of the scarp, and abrupt changes in 
the slope at boundaries between sections ex- 
posed at different times. 

Scarp height (m) 

Fig. 3. Cosmogenic 36CL ages for the bedrock scarp on the Hebgen Lake 
fault. Croup 1 is from the 1959 scarp; groups 2 through 6 are from the 
pre-1959 part of the scarp, -20 m east of group 1. Sections 1 through 
6 have been defined in the field using the degree of surface weathering 
and coloration. Individual apparent ages (left panel) form a pattern 
expected for scarps formed by recurring faulting. Error bars (1 SD) 
represent overall analytical uncertainty calculated using Monte Carlo simu- 

face pitting, and coloration. The 1959 surface 
(section 1 in Fig. 3A) is smooth, highly pol- 
ished, heavily mineralized, and light brown. 
Lower (younger) pre-1959 faces have a fresh, 
smooth, unweathered appearance, contain 
well-preserved (section 2) or slightly weath- 
ered (section 3) slickensides, and are light 
beige and gray. Upper (older) faces have 
progressively deeper and wider weathering 
pits. Section 4 has parallel weathering grooves 
developed along firmer slickensides. Section 
5 has deep weathering pits with no recogniz- 
able directional pattern; any former slicken- 
sides have been completely obliterated by 
weathering. The uppennost part (section 6) is 
similar to section 5 in surface weathering, but 
it is clearly distinguishable by its much dark- 
er color. 

Model ages of paleoearthquakes (Fig. 3B) 
are calculated by correcting the apparent ages 
for 36Cl that accumulated below the surface 
before the rupture that exposed the face, in 
accord with the conceptual model of scarp 
exposure and accumulation of cosmogenic 
36Cl. In the calculations of model ages, geo- 
chemical and isotopic data are used together 
with the locations of the weathering bound- 
aries determined in the field. The data imply 
that earthquakes occurred 0.4, 1.7, 2.6, 7.0, 
20.3, and 23.8 ka. All six model ages are 
statistically different at the la level (Fig. 3B). 
However, at the 2a  level, there are overlaps 
in groups 6 and 5 ,3  and 2, and 2 and 1. This 
resolution problem is due to the short time 
intervals between earthquakes, combined 
with dificulties in measuring the extremely 
low concentrations of stable C1 in the samples 
(15). An independent age estimate of 2.8 + 
1.1 ka has been obtained for a pre-1959 scarp 

0 
0 2 4 6 8 10 12 

Scarp height (m) 

lation. Exponential best fits (dashed lines) delineate a trend within each 
group, similar to that predicted by the conceptual model (Fig. 2). Model ages 
(right panel) form six groups whose means (solid lines) are statistically 
different at the l a  level (white bands). At the 2a level (gray bands), groups 
5 and 6, 2 and 3, and 1 and 2 are statistically indistinguishable. These parts 
of the scarp are considered to  have been formed by different earthquakes, on 
the basis of differences in surface appearance. 
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- 10 km to the south from slope diffusion 
modeling (16). This age agrees within uncer- 
tainty with our age of 2.6 ka. 

Our results indicate that most of the slip 
occurred at -24 to 20 ka and 7 to 0 ka. These 
times of increased activity were separated by 
a period of relative seisrnic quiescence. A 
similar time iilterval separates the period of 
activity at 20 to 24 ka frorn the next older 
36Cl age of -37 ka, suggesting that earth- 
quake activity on the Hebgen Lake fault is 
periodic. This temporal clusterirlg of paleo- 
earthquakes is sirnilar to that described else- 
where for the Great Basin (1 7, IS) and sug- 
gested for other intraplate faults (19). 
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Detection of Centimeter-Sized 
Meteoroid Impact Events in 

Saturn's F Ring 
Mark R. Showalter 

Voyager images reveal that three prominent clumps in Saturn's F ring were 
short-lived, appearing rapidly and then spreading and decaying in brightness 
over periods of -2 weeks. These features arise from hypervelocity impacts by 
-10-centimeter meteoroids into F ring bodies. Future ring observations of 
these impact events could constrain the centimeter-sized component of the 
meteoroid population, which is otherwise unmeasurable but plays an important 
role in the evolution of rings and surfaces in the outer solar system. The F ring's 
numerous other clumps are much longer lived and appear to be unrelated to 
impacts. 

The faint and ilarvow F ring orbits 3000 km 
beyorld the outer edge of Sahlill's rnain ring 
system. It was discovered durirlg the Pioneer 
11 encounter in 1979 (1) but was imaged 
more clearly arld extensively by Voyager's 
cameras in 1980 and 1981 (2, 3). The Voy- 
ager images revealed a variety of peculiar 
stmctures within the ring, variously described 
as strands, kinks. clumps, and "braids." Many 
of these stmctures are now believed to be 
related to gravitational perh~rbations by the 
nearby "shepherding" moons Prometheus and 
Pandora (4-6). but details of the interactions 
remain mysterious. 

The F ring appears much brighter in for- 
ward-scattered than backscattered light, sug- 
gesting diffraction by a population of fine 
dust. Photometric rnodels reveal the dust to 
be predominantly <1 k m  in size (7). Such 
fine dust has a brief lifetime of lo3 to lo6 
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years against various drag forces and loss 
mechanisms (8 ) ,  so it rnust be replenished by 
an unseen population of larger parent bodies. 

After Voyager, the F ring was not seen 
again until 1995, during the crossings of 
Earth and sun through Sahlm's ring plane. 
Obseivers reported a number of new moons 
near the F ring (9-11); however, with implied 
radii of - 10 km, these bodies were too large 
to have escaped detection by Voyager. They 
have lutegrated brightnesses comparable to 
that of the brightest clumps observed by Voy- 
ager (10). so clumps provide a much more 
plausible explanation for these "moons." The 
rlurnbers and locations of the clumps changed 
between observations in May, August, and 
November of 1995 (9-ll), suggesting that 
they are transient, with lifetimes <3 months. 

The 1995 images provided a firmer con- 
straint than the Voyager data set, which mere- 
ly showed that no rnajor clumps survived for 
the -9 months between encounters (12). 
However. the Voyager data set is much more 
extensive than any obtairlable from the 
ground, with reasonable resolution and nearly 
cornplete longih~dinal coverage for periods of 
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