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Simulated Increase of Hurricane Intensities 
in a C0,-Warmed Climate 

Thomas R. Knutson,* Robert E. Tuleya, Yoshio Kurihara 

Hurricanes can inflict catastrophic property damage and loss of human life. Thus, it is 
important to determine how the character of these powerful storms could change in 
response to greenhouse gasinduced global warming. The impact of climate warming 
on hurricane intensities was investigated with a regional, high-resolution, hurricane 
prediction model. In a case study, 51 western Pacific storm cases under present-day 
climate conditions were compared with 51 storm cases under high-CO, conditions. More 
idealized experiments were also performed. The large-scale initial conditions were de- 
rived from a global climate model. For a sea surface temperature warming of about 2.2"C, 
the simulations yielded hurricanes that were more intense by 3 to 7 meters per second 
(5 to 12 percent) for wind speed and 7 to 20 millibars for central surface pressure. 

Greenhouse gas-induced climate warming 
could affect hurricanes in a number of ways, 
including changing their intensity (1, 2), 
frequency (3-5), and locations of occur- 
rence. Given the potential for catastrophic 
damage and loss of life from these storms, 
any such changes could have important so- 
cietal consequences. In this study, we ex- 
amine only the question of possible changes 
in storm intensitv due to climate warmine. 

.2 

Theoretical models of hurricane intensi- 
ty predict that the maximum potential in- 
tensity (MPI) of hurricanes will increase in 
a warmer climate (1, 2), although these 
techniques, which are based on therrnody- 
namical considerations, contain many as- 
sumptions and caveats (2, 6, 7). Global 
climate models attempt to simulate the cli- 
mate, including tropical storm-like fea- 
tures, by integrating dynamical and thermo- 
dynamical equations in three dimensions. 
To date, global models have provided sug- 
gestive, but not highly convincing, indica- 
tions of increased humcane intensities in a 
warmer climate (3,4). However, the coarse 
resolution of these global models precludes 
their simulation of realistic humcane struc- 
ture. A 1995 assessment by the Intergov- 
ernmental Panel on Climate Change (8) 
concludes that ". . . it is not possible to say 
whether the . . . maximum intensity of 
tropical cyclones will change" because of 
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increased greenhouse gas concentrations. In 
the present study, the relation between hur- 
ricane intensity and climate change was 
explored with a regional, high-resolution, 
hurricane prediction model. We focused on 
the northwest tropical Pacific region, where 
the strongest typhoons (the term used in 
the northwestern Pacific for hurricanes) are 
observed in the present climate. 

In our case study approach, we selected 
51 tropical storm cases from a control cli- 
mate simulation of a global climate model 
and 51 cases from a high-C0, climate sim- 
ulation (9). The global model used was the 
Geophysical Fluid Dynamics Laboratory 
(GFDL) R30 coupled ocean-atmosphere 
climate model (10-12), which has resolu- 
tion of about 2.25' latitude by 3.75' longi- 
tude. For the high-CO, cases, we selected 
storms from years 70 to 120 of a +l%-per- 
year C0, transient experiment, correspond- 
ing to CO, increases ranging from a factor 
of 2.0 to 3.3. Tro~icak storm-like features 
(weaker and much broader than in real- 
world storms) have previously been ana- 
lyzed in an R30 global atmospheric model 
very similar to that used here (5, 13). The 
selected storm cases were then rerun as 
5-day "forecast" experiments with the use of 
the high-resolution GFDL Hurricane Pre- 
diction System (14), which is currently used 
at the U.S. National Centers for Environ- 
mental Prediction (NCEP). This model has 
a maximum resolution in the storm region 
of 116' or about 18 km (15). Before begin- 
ning each hurricane model simulation, the 
crudely resolved global model storm (but 

intensitv distributions of the control and 
high-CO, case studies were then compared. 
Sea surface temperatures (SSTs) were held 
fixed during the hurricane model experi- 
ments. The SSTs and initial environmental 

Fig. 1. Geographical distribution of the maximum 
surface wind speeds (in meters per second) ob- 
served during 1971-1992 (A) and simulated (B 
and C) for tropical storms in the northwest Pacific 
basin. Observations are from the Joint Typhoon 
Warning Center (Guam) as compiled by C. J. Neu- 
mann in 1993, available from the National Center 
for Atmospheric Research at www.scd.ucar.edu/ 
dss (ds824.1). The simulated distributions are 
based on 71 case studies each under control (B) 
and high-CO, (C) conditions; results from 20 pre- 
liminary cases under each condition (9) were in- 
cluded in order to increase spatial coverage. 
Blank (white) regions denote areas where no trop- 
ical storms were reported during 1971-1992 (A) 
or none occurred in the case studies [(B) and (C)]. 
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conditions used for the regional humcane 
model simulations were derived from the 
global climate model. The sensitivity of 
climate to C02  concentrations in a hypo- 
thetical global version of the hurricane 

Maximum surface wind speed (mls) 

Fig. 2. Frequency distribution of maximum sur- 
face wind speeds obtained from the hurricane 
model in 51 case studies each from control 
(dashed line) and high-CO, (solid line) conditions. 

Fig. 3. Scatter plot of minimum surface pressure 
versus local SST obtained from the hurricane 
model in 51 case studies each under control (cir- 
cles) and high-CO, (asterisks) conditions. The 
dark curve is drawn to schematically illustrate an 
ex~andina envelo~e of attainable surface Dres- 

model could be different from that of the 
R30 global climate model, but is not inves- 
tigated here. 

The spatial distribution and magnitude 
of the wind speeds in the control cases (Fig. 
1B) are fairly realistic in comparison to 
observed conditions (Fig. 1A). In particu- 
lar, there is a decrease in maximum inten- 
sities over higher latitudes (with cooler 
SSTs), near the equator, and over land 
regions. One shortcoming of our simula- 
tions is that wind speeds in the strongest 
storms appear to be slightly underpredicted 
in the control cases (Fig. 1B) as compared 
with actual observations (Fig. 1A). This 
underprediction of high wind speeds for 
intense storms is a known bias of the hur- 
ricane model, although the model nonethe- 
less simulates surface pressure minima at 
least as low as the observed record (870 
mb). The high-C02 distribution (Fig. 1C) 
has more areas of very intense (>70 m/s) 
wind speeds than does the control distribu- 
tion (Fig. lB), which suggests a modest 
increase in maximum surface winds in re- 
sponse to C0,-induced warming. 

Comparison of the frequency distribu- 
tions. of the maximum surface wind speeds 
attained by each storm in the control and 
high-C02 case studies (Fig. 2) shows that 
the simulated maximum wind with the 
highest frequency of occurrence is about 5 
m/s more intense in the high-C02 case 
studies; the median of the high-CO, wind 
speed distribution in Fig. 2 is 3.2 m/s higher 
than in the-control. The Kolmogorov-Smir- 
nov (KS) one-sided two-sample test (18) 
can be used to test whether values in one 
sample are statistically larger than those of a 
second independent sample, based on the 
cumulative distributions. According to this 
test (19), the tendency for the high-CO, 

suies with increasing SST. The dashed fin; indi- storms shown in Fig. 2 to be more intense 
cates the 860-mb level discussed in the text. than the control storms is statistically sig- 

nificant at the 90% confidence level, with a 
probability of obtaining such a result by 
chance of 0.059. A comparison of the storm 
intensities simulated by the global climate 
model for these case studies (20) indicates 
that the high-CO, cases were'slightly more 
intense than the control cases, but the dif- 
ference is not statistically significant ac- 
cording to the KS test. 

In terms of minimum surface pressure, 
there is considerable scatter among the 
storm cases (Fig. 3). In both the control and 
high-C02 sets of storm cases, there are sev- 
eral relatively weak storms (>920 mb) even 
at high SSTs. The median value for the 
high-CO, cases shown in Fig. 3 is lower 
(more intense) than the control by 6.6 mb. 
However, the overall pressure distribution 
for the high-CO, cases is not significantly 
lower than the control distribution, accord- 
ing to the KS test. Nonetheless, the stron- 
gest storms occur in the high-C02 cases, 
with five storms intensifying to 860 mb or 
below, as compared to one storm in the 
control cases. Thus, the envelope of inten- 
sities appears to expand to include lower 
pressures (that is, higher storm intensities) 
for higher SSTs, as shown schematically by 
the dark curve. This result is consistent 
with theoretical calculations (1, 2) suggest- 
ing an increase in the maximum attainable 
storm intensity in a C02-warmed climate. 

Application of the KS test to the avail- 
able storm cases (21) at each hour of the 
120-hour simulations. (Fig. 4A) indicated 
that the tendency for the high-CO, storms 
to be more intense than the control storms 
is statistically significant, although not at 
all times during the 120-hour period. As a 
measure of the behavior of the more intense 
storms, we compared the value of the fifth 
lowest central pressure (-90th percentile 
intensity) for each hour among the avail- 
able storm cases for high C02  and for the 

Hour 

Fig. 4. (A) Dark lines show the fifth strongest storm intensity for each hour control distribution at the 0.1,0.05, or 0.01 levels, respectively, according to 
under control (dashed) or high-CO, (solid) conditions; shading depicts 95% a KS test. (B) Central surface pressure for control (dark dashed line) and 
confidence intervals for control conditions. Small circles (one to three rows) high-CO, (dark solid line) idealized experiments. Dierence curves Fight solid 
indicate periods when the high-CO, distribution is significantly lower than the lines in (A) and (B)] are offset by +830 mb. 

www.sciencemag.org SCIENCE VOL. 279 13 FEBRUARY 1998 1019 



i i '« l^ i 'MlS-SS. IS JSi iS i .§ i 1 l l i ' ' i l i 

control (Fig. 4A). The high-COz curve 
generally lies below the control curve, and 
at times lies below the 95% confidence 
limit {22, 23) for the control, indicating 
that the most intense storms in the high-
CO z case studies tend to be more intense 
than those in the control cases. A smaller 
and less statistically distinct change is seen 
in the medians of the central pressure dis­
tributions (20). Although the COz-induced 
storm intensification is not statistically sig­
nificant at all times, the sign of the inten­
sity change indicates stronger storms in the 
warmer climate for virtually the entire 120-
hour period. The increase in intensity of the 
fifth strongest (~90th percentile intensity) 
storm is about 10 mb for surface pressure 
and 3 m/s (5%) for wind speed {20). 

As a sensitivity test, the hurricane model 
simulations for all of the control and high-
CO z case studies were repeated without the 
use of the initial vortex replacement proce­
dure. The results {20) show a somewhat 
stronger signal than that shown in Fig. 4A, 
indicating that the increased storm intensi­
ty in the warmer climate suite is not likely 
to be an artifact of the vortex replacement 
procedure. 

As an alternative to the case studies, a 
more idealized approach was used in which 
an initial storm was embedded in an other­
wise uniform easterly flow (5 m/s). The SST, 
temperature, and moisture fields were derived 
(24) from area averages for the northwest 
tropical Pacific from the control and high-
COz runs of the climate model (from July 
through November, 8° to 26°N, 124° to 
161 °E). The increase in SST in the high-
COz climate was 2.2°C, compared with an 
increase of over 5°C in the upper tropo­
sphere. The surface pressure time series (Fig. 
4B) indicate that the high-COz case is 
roughly 20 mb more intense than the con­
trol; the increase in maximum wind speeds 
{20) is about 7 m/s (12%). Typical changes of 
15 to 20 mb were obtained with background 
easterly flows varying from 0 to 7.5 m/s {20). 
It has recently been suggested (2) that in a 
COz-warmed climate, any intensification of 
hurricanes due to increased SST would be 
moderated by more stable lapse rates, such as 
those simulated in COz-increase experiments 
using the global climate model. By design, 
our idealized and case study results include 
this moderating effect of a more stable tropo-
spheric lapse rate (see above). Although the 
processes leading to more intense storms un­
der high-COz conditions are not fully under­
stood, we note that both the domain-aver­
aged surface evaporation and the near-storm 
environmental convective available poten­
tial energy (CAPE) are enhanced in the 
high-COz cases, with the CAPE increasing 
despite the more stable tropospheric lapse 
rate under high COz conditions. 

Our simulation results can be compared 
with theoretical estimates of the MPI of 
hurricanes that were obtained with the same 
time-mean thermodynamic profiles as our 
idealized simulations. Using Emanuel's 
method (6), we obtained an intensity in­
crease of 23 mb and 10 mb, assuming ther-
modynamically reversible or pseudoadiabatic 
ascent of air parcels, respectively. With Hol­
land's method (7), we obtained an intensity 
increase of 18 mb. Thus, the impact of COz-
induced warming on hurricane intensity as 
estimated with the theoretical methods is 
comparable to our simulation results. 

Using both a case study and an idealized 
approach, we find that COz-induced warm­
ing leads to more intense hurricanes (that 
is, typhoons) in the northwest Pacific basin. 
Our study does not address a number of 
important issues, such as the effect of the 
storm itself on the local SST, uncertainties 
in air-sea exchange processes (2, 25), sensi­
tivity to model resolution or model physics, 
and applicability to other tropical cyclone 
basins. However, we are encouraged by the 
fact that with the present simulation ap­
proach, a reasonable spatial distribution and 
magnitude of storm intensities can be sim­
ulated for the northwest Pacific basin and 
that our CO z sensitivity results are in rea­
sonable agreement with calculations made 
with theoretical techniques (6, 7). 
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