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Role of Dynarnin in the Formation of Transport 
Vesicles from the Trans-Golgi Network 

Steven M. Jones, Kathryn E. Howell, John R. Henley, 
Hong Cao, Mark A. McNiven* 

Dynamin guanosine triphosphatases support the scission of clathrin-coated vesicles 
from the plasmalemma during endocytosis. By fluorescence microscopy of cultured rat 
hepatocytes, a green fluorescent protein-dynamin I1 fusion protein localized with clath- 
rin-coated vesicles at the Golgi complex. A cell-free assay was utilized to demonstrate 
the role of dynamin in vesicle formation at the trans-Golgi. Addition of peptide-specific 
anti-dynamin antibodies to the assay mixture inhibited both constitutive exocytic and 
clathrin-coated vesicle formation, lmmunodepletion of dynamin proteins also inhibited 
vesicle formation, and budding efficiency was restored upon readdition of purified 
dynamin. These data suggest that dynamin participates in the formation of distinct 
transport vesicles from the trans-Golgi network. 

T h e  dynamins comprise a family of 100-kD 
guanosine triphosphatases that have been 
implicated in severing clathrin-coated in- 
vaginations from the plasma membrane 
based on the shibiret" mutant of Drosophilcl 
melanogaster (1) and studies of a mutant 
dynamin isoform overexpressed in mamma- 
lian epithelial cells (2-4). Originally dy- 
namin was thought to be a neuronal specific 
protein. However, three distinct dynamin 
genes recently have been identified in 
mammals: dynamin I (Dynl) is expressed 
exclusively in neurons (5, 6);  dynamin I1 
(Dyn2) is found in all tissues (6);  and dy- 
namin 111 (Dyn3) is restricted to the testis, 
the brain, and the lung (7). Each dynamin 
gene encodes at least four alternatively 
spliced isoforms (8). Whether all these dy- 
namin gene products function solely at the 
plasma membrane or also mediate other 
vesicle scission events at distinct cellular 
sites is unknown (8). Recently, a dynamin 
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has been localized to the Golgi complex of 
mammalian cells by biochemical, immuno- 
logical, and morphological techniques (9 ,  
10). To  provide additional evidence sup- 
porting the Golgi localization of a specific 
dynarnin isoform, we linked Dyn2 (spliced 
form "aa") to green fluorescent protein 
(GFP) and expressed it in a rat hepatocyte 
cell line. Subsequently, its distribution was 
followed in viva by fluorescence microscopy 
(1 1-1 3 )  (Fig. 1) .  In parallel, untransfected 
cells were labeled with a Dyn2-specific 
antibody and a Pan-dynamin antibody 
(MC63),  which recognizes a conserved re- 
gion of the dynamins (14). A prominent 
punctate staining at the plasma membrane 
and the Golgi region was observed with 
both experimental protocols [GFP-Dyn2 
in vivo (Fig. 1, B and D) and endogenous 
Dyn2 after fixation and iinmunolocaliza- 
tion (Fig. 1, A, B ' ,  C, and D')] .  Thus, the 
transfection process did not alter the dis- 
tribution of the endo~enous  Dvn2 com- 
pared with untransfected cells. 1lAportant- 
ly, the overlap between the two images 
(Fig. 1 )  suggests that a Dyn2 isoform is 
localized to vesicles at both the nlasma 
membrane and the Golgi complex. 

T o  define more precisely the localization 
of Dyn2 at the Golgi region, cells expressing 
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GFP-Dyn2 were labeled with antibodies to 
either clathrin or an antigen of the trans- 
Golgi, TGN38 (14). A nearly identical flu- 
orescence pattern was observed between 
GFP-Dyn2 and the clathrin labeling (Fig. 2, 
A to A"). The significant overlap between 
GFP-Dyn2 and clathrin at the Golgi region 
suggests that Dyn2 may associate with nas- 
cent clathrin-coated buds forming at the 
trans-Golgi network (TGN). These images 
also demonstrate a colocalization of GFP- 
Dyn2 and clathrin at the plasma membrane 
and provide an important control, as others 
have shown a colocalization of dynamin 
and clathrin by double labeling and con- 
ventional immunofluorescence microscopy 
(3, 15). The localizations of TGN38 and 
GFP-Dyn2 were nearly identical in the cen- 
tral region of the cells; however, the overlap 
on peripheral vesicles was significantly less 
than with clathrin (Fig. 2, B to B"). Thus, at 
least one spliced variant of dynamin 
(Dyn2aa) associates with clathrin-coated 
vesicles at the TGN in these cells and 
probably is more widely distributed than the 
clathrin-coated vesicles in the TGN. A 
similar distribution was observed in cells 
that expressed the spliced variant Dyn2ba 
(16). Therefore, Dyn2 may function in ves- 
icle budding events at the TGN. 

To support the morphological localiza- 
tion of Dyn2 at the Golgi complex, we 
conducted complementary biochemical 
studies. We determined the amount of dy- 
namin binding to a highly enriched rat liver 
Golgi fraction (1 7) under three conditions, 
all containing added cytosol(100,000g liver 
supernatant): alone in the absence of aden- 
osine triphosphate (ATP), with added 
ATP, and with an ATP regeneration system 
either without or with guanosine 5'-0-(2- 
thiodiphosphate) (GTP-y-S) (1 8). After 
the incubation, Golgi fractions were sepa- 

rated from cytosol and subjected to SDS- minimal amount of it was found associated 
polyacrylamide gel electrophoresis (SDS- with the Golgi fraction (Fig. 3A). When 
PAGE) and immunoblot analysis with the ATP and an ATP regeneration system were 
Pan-dynamin antibody MC63. When dy- added to the incubation mixture, a 3-fold 
namin was incubated with cytosol alone, a increase in dynamin binding was observed 

plasma membrane and the TGN. Dou- 
ble-label fluorescence microscopy of 
clone 9 cells expressing GFP-Dyn2. (A 
and B) GFP-Dyn2 is localized to punc- 
tate vesicles at the plasma membrane 
and in the Golgi region. Immunolocal- 
ization of the same cell with a monoclo- 
nal clathrin antibody (A') shows a nearly 
identical localization with the GFP- 
Dyn2 at the plasma membrane and 
the Golgi complex. lmmunolocalization 
with an antibody to TGN38 (B') shows 
a nearly identical localization of the 
GFP-Dyn2 with the prominently labeled 
Golgi. Bars = 10 bm. 

Fig. 1. A GFP-Dyn2 protein expressed in cultured Untransfected Transfected 
hepatocytes localizes to the plasma membrane 
and perinuclear vesicles. (A and C) Immunofluo- m-- 
rescence microscopy of nontransfected cultured 
clone 9 cells stained with affinity-purified antibod- 
ies specific for Dyn2 (A) or the Pan-dynamin anti- 1 
body MC63 (C), which recognizes all dynamin iso- 
forms [for details of antibodies see (1411. Numer- ~ 
ous punctate vesicles are seen at the cell periph- 
ery near the plasma membrane (arrowheads) and : 
around the nucleus (arrows). (B and D) Clone 9 1 
cells transfected with a GFP-Dyn2 construct and 1 

viewed in vivo with a cooled CCD video camera. 
The GFP-Dyn2 localizes to vesicles at the plasma 
membrane and in the Golgi region, a pattern sim- 
ilar to the localization obtained with antibodies 
against dynamin in untransfected cells (A and C). 
(B' and D') The GFP-Dyn2-expressing cells 
stained with the Dyn2-specific (B') or MC63 (D') 
antibodies show colocalization of overexpressed 
and endogenous forms of dynamin. Bars = 10 
Pm. ! 
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and the addition of GTP-y-S resulted in a 
10-fold increase in dynamin binding. These 
experiments support the morphological ob- 
servations that dynamin associates with the 
Golgi and demonstrate that this association 
is energy-dependent. 

To test whether Dyn2 acts in vesicle 
formation from the TGN as it does at the 
plasma membrane, we used a cell-free assay 
of vesicle formation from the TGN (1 9, 
20). This assay. measures the formation of 
both polymeric immunoglobulin A receptor 
(pIgA-R)-containing (constitutive) exo- 
cytic vesicles and clathrin-coated vesicles 
from the TGN by using a purified rat liver 
stacked Golgi fraction. Consistent with pre- 
vious work (19), in the complete system the 
budding efficiency of the mature form of the 
pIgA-R was -70%, and in the absence of 
cytosol had a background of less than 5% 
(Fig. 4C). In the absence of cytosol, the 
background of clathrin-coated vesicle bud- 
ding also was less than 5% (Fig. 4D). First, 
the effect of dynamin antibodies on vesicle 
formation was tested. Three different affini- 
ty-purified peptide antibodies against con- 
served or isoform-specific domains of the 
dynamins (Fig. 3B) [see (14) for discussion of 
antibody specificity] were added to the assay 
mixture in increasing concentrations (0 to 
16 pg). Antibodies against a conserved re- 
gion of the kinesin heavy chain (MC44) or 
vesicular stomatitis virus G protein (P5D4) 
(1 7) were used at the same concentrations 
and served as controls. Although control 
antibodies did not inhibit the budding of 

pIgA-R-containing or clathrin-coated vesi- 
cles at any of the concentrations tested, the 
formation of both vesicle populations was 
inhibited significantly by the MC63 and 
DynLspecific antibodies (Fig. 3B). Inhibi- 
tion with MC63 was apparent with 1 to 2 pg 
of antibody and nearly complete inhibition 
was achieved with -8 pg of antibody. The 
DynZspecific antibody was slightly less effi- 
cient at inhibiting the formation of both 
vesicle populations and the MC60 antibody 
only partially inhibited vesicle budding. The 
MC63 and Dyn2-specific antibodies showed 
the highest immunoreactivities by immuno- 
blot analysis and immunofluorescence mi- 
croscopy (21), which may explain the dif- 
ferences observed between antibodies in 
these functional inhibition studies. MC63 
specifically labels the Golgi by immunoflu- 
orescence microscopy and efficiently immu- 
noisolates Golgi components (9). Because 
antibodies against two distinct dynamin do- 
mains effectively inhibited the formation of 
both vesicle populations, whereas control 
antibodies had no effect, these reagents 
demonstrate a specific block of dynamin 
function at the TGN. 

To provide an additional test for the par- 
ticipation of dynamin in vesicle formation 
from the TGN, the cell-free assay was camed 
out either with cytosol immunodepleted of 
dynamin proteins or after readdition of a 
dynamin-enriched preparation to the deplet- 
ed cytosol (Fig. 4). Dynamin was depleted 
from rat liver cytosol by using two immuno- 
affinity columns made from the MC63 and 

Dyn2-specific antibodies (22). By SDS- 
PAGE and Coomassie blue staining, we 
found that the starting rat liver cytosol and 
depleted cytosol did not differ significantly 
(Fig. 4A). In contrast, immunoblot analyses 
of these fractions clearly showed a complete 
depletion of dynamin from the cytosol (Fig. 
4A). For reconstitution of the depleted cy- 
tosol. a dvnamin-enriched fraction was Dre- 
p a r i  from rat brain by column chroma;og- 
raphy (23) (Fig. 4B). This purification pro- 
cedure was utilized because the conditions 
used to elute dvnamin vroteins from the 
immunoaffinity column &activated the pro- 
tein. Standard chromatomavhic methods 
provided a highly enrichd dhamin prepa- 
ration that contained all three dynamin iso- 
forms (Dynl, -2, and -3). Significantly, de- 
pletion of dynamin proteins from the cytosol 
totally inhibited both exocytic and clathrin- 
coated vesicle formation (Fig. 4, C and D). 
Readdition of the dvnamin-enriched frac- 
tion to the depletd cytosol restored the 
budding activity of both vesicle populations 
in a concentrationdependent manner, with 
-25 pg sufficient to restore budding to near 
control levels. Addition of 50 pg of the 
enriched dynamin fraction alone (without 
the depleted cytosol) could not restore any 
budding activity, which supports the obser- 
vations indicating that other cytosolic com- 
ponents are required for budding (24). 

The immunolocalization studies (9, 10) 
combined with the GFP-Dyn2 localization 
and the functional ex~eriments  resented 
here demonstrate a requirement for dynamin 

Fig. 3. Antibodies to dynamln lnhlbit veslcle for- A B Dynamin II 
mation from the Golgt complex (A) Dynamln btnd- N I  1 1  
n g  to a hlghly enrlched Golgl fractlon The SGFl GTPS. Y Y 

MC63 MC60 F F C ~ S  was Incubated w~th a cytosoltc fract~on In the ab- C ".a- O Y  2"'. 2 

175 
sence of ATP (lane 1). In the oresence of ATP and 
an ATP-regenerating system (lane 2): or in the 150- 

presence of ATP, an ATP-regenerating system. g 
and 10 KM GTP-y-S (lane 3) at 37°C for 15 min. 5 125- 

The reaction mixture was centrifuged through a 2 lm- 
sucrose cushion and the Golgi pellet was immu- 
noblotted and analyzed for the presence of dy- B 75 - 
namin. The dynamin-immunoreactive band at 100 - 
kD is shown in the upper panel, and quantitation : 
of the amount of dynamin bound (Phosphorlm- 25 - 
ager units) is shown in the lower panel. Note the 
increase In the association of dynamin with the 0, 

Golgi membranes in the presence of either ATP or LP+y rr-!muR6 
GTP-y-S. Each assay was carried out in triplicate and the standard error is - 40 

0 
plotted. (B) Antibodies to dynamin inhibit formation of both the plgA-R- g 20 
containing exocytic and clathrin-coated vesicles. (Top) Domains of Dyn2 are o 

0 4 8 12 16 8 12 16 
diagrammed and include three GTP-binding consensus sequence elements 

A H I ~  per =my (WI 
in the NH,-terminus, a pleckstrin homology (PH) domain in the COOH- 
terminal region, and a proline-rich domain at the COOH-terminus. The the antibody concentration. Control antibodies to the plgA-R (not shown) 
regions used to generate the polyclonal MC60, MC63, and Dyn2-specific and kinesin heavy chain (MC44) have no effect on vesicle budding, where- 
antibodies are noted. The MC60 and MC63 epitopes are present in all as the MC63 and Dyn2-specific antibodies were strongly inhibitory. Anti- 
dynamin isoforms, whereas the Dyn2-specific epitope is unique to Dyn2, body MC60 induced a more modest inhibition. Antibodies were preincu- 
(Middle and bottom) Cell-free assays of vesicle budding from the TGN were bated with the cytosolic fraction for 30 min on ice before they were added 
carried out in the presence of increasing amounts (0 to 16 kg) of affinity- to the cell-free assay mixture. The antibody used in each reaction is listed 
purified antibodies. The budding efficiencies of the plgA-R-containing above the corresponding graph: MC44 (against kinesin), MC60, MC63, 
vesicles (middle) and clathrin-coated vesicles (bottom) are plotted against and DYN 2. 
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Fig. 4. Vesicle formation from m elute C 
the TGN is dependent on dy- 
namin and cytosolic factors. (A) 
lmmunodepletion of dynam~n 
from rat liver cytosol using imrnu- 
noaffinity columns. A rat liver cy- 
tosolic fraction was passed over 
two successive antibody col- 
umns and the nonbound frac- 
tions were collected and con- 
centrated. Fractions of the start- 
ing (SM) and imrnunodepleted 
(DPL) cytosolic fraction were re- 
solved by SDS-PAGE and 
stained w~th Coomassie blue 193 

(top) or transferred to nitrocellu- 123 
lose filters and blotted with the 
Pan-dynamin antibody MC63 85 

elute - 
1 2  

proteins in the formation of two different 
vesicle populations from the TGN. Al- 
though dynamin rings around the necks of 
forming TGN vesicles have not been report- 
ed. these structures have been observed onlv 

- 
(bottom). (6) Generation of an 125 
enriched dynamin fraction from 

47 C loo- 
rat brain for use in restoration ex- 

- 
47 m T 

periments. A rat brain dynamin- +T 
6 75-  

enriched fraction (elute) was ob- a 

at the plasma membrane in neurons of the 
shibire"' flies at the restrictive temDerature 

n 
tained by ion-exchange column chromatography as described (9). Proteins were resolved by SDS- - 50 - 

(8). Rings at the plasma membrane have not 
been resolved in e~ithelial tissues of the 

T 

same flies or in any mammalian cells under 
physiological conditions (without GTP--y- 
S). Although the precise role of dynamin 
isoforms in the formation of vesicles from the 
TGN is undefined, it is attractive to specu- 
late that dynamin participates in the scission 
of nascent vesicles (9, 25). A previous study 
in which a mutant Dynl protein was over- 
expressed in epithelial cells did not find an 
inhibition of transport of newly synthesized 
hydrolytic enzymes from the Golgi to the 
lysosome (3), suggesting that Dynl does not 
act at the TGN. On the basis of our obser- 
vations of a preferential association of the 
Dyn2 protein with the Golgi, it is not sur- 
prising that an overexpressed mutant Dynl 
isoform would have little effect on the for- 
mation of vesicles from the TGN. We as- 
sume that Dyn2 is the dynamin acting at the 
TGN for several reasons. First, Dyn2 is cur- 
rently the only dynamin known to be ex- 
pressed in most epithelial cells (6). Second, 
an antibody that is specific for Dyn2 local- 

PAGE and either stained with Cwmaesie blue (top) or transferred to nitrocellulose filters for immunoblot 
25 - analysis (bottom). Other fractions shown are a high-speed supernatant (HSS) and the void volumes 

-r T 

ized this isoform to the Golgi complex by 

- 

immunofluorescence microscopy (Fig. 1) 
and inhibited vesicle formation from the 
TGN in the cell-free assay (Fig. 3, C and D). 
Finally, a GFP-Dyn2 protein expressed in 
cultured cells localized with both clathrin 
and TGN38 at the Golni as determined bv 

collected from DEAE (DO and phosphocellulose (PC) anion-exchange columns. (C and 0) Dynamin- [TL 
dependent vesicle budding from theTGN by a reconstituted cell-free assay. Cell-free assays to measure 1 2 3 4 5 6 7 8  
budding of plgA-R-ontaining (C) and clathrin-coated (D) vesicles were carried out under the following conditions: in the absence of ATP and cytosol (lane 1): in 
the presence of ATP and cytosol (lane 2); with a dynamin-depleted cytosolic fraction (lane 3): with a dynamin-depleted cytosolic fraction plus increasing 
concentrations of a dynamin-enriched fraction (lanes 4 to 7); and with the dynamin-enriched fraction alone (lane 8). Lanes 4 to 7 contain 5, 10, 25, and 50 pg  of 
dynamin-enriched fraction, respectively. Whereas no vesicle budding occurred with dynamin-depleted cytosol, formation of both plgA-R-containing (C) and 
clathrin-coated (D) vesicles was restored to near control levels when the dynamin fraction was added back to the reaction mixture. Importantly, the dynarnin 
preparation alone did not support vesicle budding. Each assay was carried out in triplicate and the standard error is plotted. lrnmunoblot analysis of a 
representative experiment showing the 116-kD form of the plgA-R (C) and the 180-kD clathrin heavy chain (D) is shown above each bar graph. 

- 
immunofluorescence microscopy (Fig. 2). 
The other known dvnamin  rotei ins. such as 
the neuronally exp;essed &l and Dyn.3, 
when cou~led to GFP. show a markedlv dif- 
ferent disiibution from each other and kom 
Dyn2 in the rat hepatocyte cell line (26). 
Although both of the Dyn2 spliced variants 
that we have expressed localized to the 
Golgi, only one of the expressed Dynl or 
D y d  proteins showed a modest Golgi asso- 
ciation. Whether the modest affinity of a 
Dynl spliced form for the Golgi reveals its 
true localization in neuronal cells or repre- 
sents a nonspecific interaction based on par- 
tial sequence homology to the Dyn2 forms is 
unclear. Determining the roles of the many 
dvnamin isoforms and their s~liced vari- 
ants and defining the molecular interac- 
tions of Dyn2 at the TGN remain as chal- 
lenges for the future. 
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tations of the c-kit gene have been found in 
several tumor mast cell lines of rodents and 
humans (5,6) and in mast cell tumors of 
humans (7). Here we investigate the muta­
tional status of c-kit in mesenchymal tumors 
of the human gastrointestinal (GI) tract. 

Gain-of-Function Mutations of c-kit in Human 
Gastrointestinal Stromal Tumors 

Seiichi Hirota,* Koji Isozaki,* Yasuhiro Moriyama, 
Koji Hashimoto, Toshirou Nishida, Shingo Ishiguro, 
Kiyoshi Kawano, Masato Hanada, Akihiko Kurata, 

Masashi Takeda, Ghulam Muhammad Tunio, Yuji Matsuzawa, 
Yuzuru Kanakura, Yasuhisa Shinomura, Yukihiko Kitamurat 

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in 
the human digestive tract, but their molecular etiology and cellular origin are unknown. 
Sequencing of c-kit complementary DNA, which encodes a proto-oncogenic receptor 
tyrosine kinase (KIT), from five GISTs revealed mutations in the region between the 
transmembrane and tyrosine kinase domains. All of the corresponding mutant KIT 
proteins were constitutively activated without the KIT ligand, stem cell factor (SCF). 
Stable transfection of the mutant c-kit complementary DNAs induced malignant trans­
formation of Ba/F3 murine lymphoid cells, suggesting that the mutations contribute to 
tumor development. GISTs may originate from the interstitial cells of Cajal (ICCs) because 
the development of ICCs is dependent on the SCF-KIT interaction and because, like 
GISTs, these cells express both KIT and CD34. 
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