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Tin-Based Amorphous Oxide: A High-Capacity 
Li thium-lon-Storage Material 

Yoshio Idota, Tadahiko Kubota, Akihiro Matsufuji, 
Yukio Maekawa, Tsutomu Miyasaka* 

A high-capacity lithium-storage material in metal-oxide form has been synthesized that 
can replace the carbon-based lithium intercalation materials currently in extensive use 
as the negative electrode (anode) of lithium-ion rechargeable batteries. This tin-based 
amorphous composite oxide (TCO) contains Sn(ll)-0 as the active center for lithium 
insertion and other glass-forniing elements, which make up an oxide network. The TCO 
anode yields a specific capacity for reversible lithium adsorption more than 50 percent 
higher than those of the carbon families that persists after charge-discharge cycling when 
coupled with a lithium cobalt oxide cathode. Lithium-7 nuclear magnetic resonance 
measurements evidenced the high ionic state of lithium retained in the charged state, in 
which TCO accepted 8 moles of lithium ions per unit mole. 

Li th ium- ion  insertion materials have 
gained considerable a t tent ion because 
they can  be used as a n  active electrode in  
Li-ion rechargeable batteries, which have  
potential applications ranging from porta- 
ble electronic devices to  electric vehicles. 
Unt i l  1980, Li metals and alloys were used 
as anode (negative electrode) materials in 
combination with various solid-solution 
cathode materials ( 1 )  in  Li-ion batteries. 
From 1985 onward, the  sole alternative to  
t h e  Li metal anode, adopted t o  overcome 
safety problems, were carbon-based Li-ion 
intercalation materials ( 2 ) ,  which intro- 

duced the  concept of a "rocking-chair" 
type of rechargeable battery. Lithium ions 
are reversibly stored between layered car- 
bon frameworks, which thereby develop 
a n  electrochernical potential relative to  
t h e  Li/Li+ anode low enough to  act as 
negative electrodes. There  have been im- 
portant improvements in  the  Li-storage 
capacity of carbon materials tha t  allow it 
t o  exceed t h e  stoichiometric limit of Li- 
ion intercalation in graphite (LiC6),  372 
milliampere-hours per gram (mA.hour/g) 
of Cb (3). T h e  possibility of creating high- 
capacity anodes that  leapfrog this limit has 
been demonstrated with the  deep doping 
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hazardous metallic Li (dendrite) o n  the  
electrode surface (6) .  

W e  have synthesized a n  amorphous 
metal-oxide material tha t  can  store Li ions 
with a Coulornbic capacity reaching tha t  
of hydrogen-storage alloys, ensuring pro- 
tection against dendritic Li formation. 
T h e  amornhous material is a metal com- 
posite oxide glass tha t  contains tin(I1) 
oxide as a n  active center for Li adsorntion. 
It  provldes a gravimetric capacity of >600 
mA.hour/g (0.022 mol of Li per gram) for 
reversible Li adsorption and  release, which 
corresponds in  terms of reversible capacity 
per unit  volume to  more t h a n  2200 
mA.hour/cm3 (0.075 mol of Li per cubic 
centimeter).  T h e  latter value is about 
twice the  reversible capacity of state-of- 
the-art high-capacity carbon materials 
(840 to  1200 mA.hour/cm3) ( 5 ) .  

T h e  tin-based composite oxide ( T C O )  
active material has a basic formula repre- 
sented by SnM,O,, where M is a group of 
glass-forming metallic elements whose to- 
tal stoichiometric number is equal to  or 
more t h a n  tha t  of t in  (x 2 1 )  and is 
typically comprised of a ri ixture of B(III), 
P(V),  and Al(II1). I n  the  oxide structure, 
Sn(I1) forms the  electrochemically active 
center for Li insertion and ~ o t e n t i a l  de- 
velopment, and  the  other  metal group pro- 
vides a n  electrochemically inactive net-  
work of -(M-0)- bonding tha t  delocalizes 
the  Sn l I I )  active center.  T o  confer high 
reversibilky in  Li storage and release, tLe 
S n - 0  framework was thus anisotro~ical lv  
expanded by incorporating glass-forming 
network elements-B, P, and Al-in view 
of the  enhancement  of Li-ion mobility in  
the  anisotropic glass structure, favorable 
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for ionic diffusion and release. For synthe- 
sis, powders of SnO, B203, Sn,P207, and 
A1203 were mixed and grained at a molar 
ratio of Sn:B:P:Al = 1.0:0.6:0.4:0.4. The 
powder mixture was heated to 1100°C for 
more than 10 hours in an alumina crucible 
under flowing argon to invoke the reac- 
tion in a molten state. The resulting prod- 
uct was then quenched to room tempera- 
ture at a cooling rate of 10" to 20°C per 
minute to yield a transparent yellowish 
glass. The glassy materia1,has the formula 
Sn1.0~0.56p~.40A10.4& (named TCO-I), 
as analyzed by inductively coupled plasma 
atomic emission sDectrometrv. Active ma- 
terials of various element ratios were also 
prepared in the same manner and were 
milled to yield white powders (Fig. 1). 

Our x-ray diffraction analysis for the 
powders of T C O  products established the 
noncrystalline (amorphous) state of these 
glassy materials (Fig. 2). A broad band of 
weak diffraction was observed, peaking at 
around 20 = 27' to 28'. without concom- 
itance of any diffraction line assigned to 
crvstalline forms. This distribution is char- 
acteristic of SnO-based oxide glasses stud- 
ied for SnO-Si02 systems (7). Radial dis- 
tribution analysis shows that the broad 
peak codresponds to a radius range of 3.0 
to 4.5 A, attributable to statistical distri- 

hg. I.  BUIK rln-aasea composlre oxlae ( I c;q ac- 
tive material (left). It is a yellowish transparent glass 
with a density of 3.7 g/cm3. Crushing the glass 
provides a white powder of active material (right) 
capable of Li insertion for use in the negative elec- 
trode of Li-ion rechargeable batteries. The pow- 
der typically has a surface area of 0.6 m2/g, as 
measured by the Brunauer, Emmett, and Teller 
(BET) technique. 

20 (degrees) 

Fig. 2. The x-ray diffraction spectrum of TCO-1 
under Cu Ka radiation. Only a weak diffraction 
distribution is observed with a peakat 20 = 27Oto 
28", which is a characteristic of SnO-containing 
glass and reflects a distribution of Sn-Sn distanc- 
es in the anisotropic matrix. The Li-absorbed 
charged state of TCO-1 gave essentially the same 
amorphous profile. 

bution of the Sn-Sn dis tpce  rather than 
the S n - 0  distance (2.2 A in SnO). Mor- 
phological analysis of TCO glass by scan- 
ning electron microscope and energy-dis- 
persive x-ray spectroscopy techniques es- 
tablished the homogeneity of the glass 
composition that follows the starting mix- 
tures. Structurally, TCO is supposed to 
consist of homogeneously and anisotropi- 
cally dispersed S n - 0  core sites surrounded 
by a random network array of Bz03, P,05, 
and A1203. The density of TCO-1 was 
3.70 g/cm3, which is less than the theoret- 
ical value of 3.9 to 4.1 g/cm3 calculated 
from a crystalline model and 60% greater 
than that of graphite (2.26 g/cm3). 

The Li storage capacity of TCO was 
investigated by means of electrochemical 
insertion of Li ions into TCO, with use of 
a button-type cell with a Li-metal coun- 
terelectrode (containing 6 mol % Al) 
serving as a Li-ion source. The TCO pow- 
der (average grain size of 5 to 10 pm) was 
mixed with a polytetrafluoroethylene 
(PTFE) powder as a binder and an elec- 
troconductive carbon powder in a weight 
ratio of 83:2:15, respectively, and was 
compressed into a pellet (thickness, 0.07 
mm; area, 1.33 cm2; weight of contained 
TCO, 20.8 mg). The TCO pellet and 
0.6-mm-thick Li electrode were mounted 
in a button cell with a polypropylene sep- 
arator sheet sandwiched between both 
electrodes. A nonaqueous electrolyte solu- 
tion was used that consisted of ethylene 
carbonate (EC) and diethylcarbonate 
(DEC) in a volume ratio of 1: 1; the elec- 
trolyte consisted of 1 mol of LiPF6 per liter 
of solution. The cell was fabricated in a 
dry-air environment and was tightly 
shielded against ambient moisture. 

The charge-discharge capacity of TCO 
was examined at  room temperature. The 
cell was charged (Li inserted) to 0 V and 
discharged (Li released) to 1.20 V at a 
constant current of 1 mA. The curve (Fig. 
3) shows that TCO working in the low- 
potential range (0 to 1.2 V versus Li/Li+) 
is suitable for use as negative-electrode 
active material in Li-ion batteries. In the 
initial cycle, the charging capacity for 

Li-ion storage reached 1030 mA.hour/g, 
which corresponds to about 8 equivalent 
mole of Li ions per unit mole of TCO. 
Subsequent Li-release processes up to 1.2 
V yielded a Coulombic capacity of 650 
mA.hour/g (5 mol of Li released), accom- 
panied by a 37% loss of the initial dis- 
charge efficiency (8). The latter capacity 
holds for succeeding cycles with nearly 
100% Coulombic efficiency without caus- 
ing a significant increase in electrode 
resistance. 

The obtained reversible Li-ion storage 
capacity, >600 mA.hour/g, gives a specific 
capacity per unit volume of >2200 
mA.hour/cm3, which corresponds to near- 
ly twice the level of existing state-of-the- 
art carbon materials (<I200 mA.hour/ 
cm3 and <500 mA.hour/g) (3). This ex- 
tremely high capacity of TCO compares 
well with those capacities of hydrogen- 
storage alloys as represented by AB5-type 
compounds such as LaNi5. They give 
<2400 mA-hour/cm3 (9) according to the 
stoichiometric limit of one atom of hydro- 
gen for each atom of metal. In contrast, 
T C O  is capable of accepting eight ions of 
Li per Sn atom, 

Other TCO materials of different ele- 
ment molar ratios-Sn:B:P:Al such as 
1.0:0.4:0.4:0.3, 1.0:0.5:0.5:0.4, 1.0:0.6: 
0.5:0.1, and 1.0:0.5:0.4:0.1-yielded es- 
sentially the same charge-discharge profile 
(lo), although their Li storage capacities 
were dependent on the net content of 
Sn(I1). The Sn-O bond apparently provides 
the core site that contributes to the active 
charge-discharge of Li species. Control ma- 
terials free of Sn, comprising a glass-forming 
network of B, P, and A1 only, gave substan- 
tially zero capacity (1 1 ). 

Lithium-? nuclear magnetic resonance 
measurements (7Li-NMR) were conducted 
to elucidate the state of the Li ion inserted 
in the TCO. The 7Li-NMR spectra of 
Li-inserted TCOs evidenced no single me- 
tallic bands in the course of cathodic 
charging of TCOs down to 0.06 V versus 
Li/Li+. Figure 4A shows a typical 7Li- 
NMR spectrum of TCO at a Li insertion 
level of Li/Sn = 8 [charging of 1000 

Fig. 3. Cycling of electrochemical Li insertion 
(charge) and release (discharge) on TCO-1 - 
(Sn,.oBo.,,Po.4~lo,4203,$ at a constant current of P2 1 .O 1 mA per 20.8 mg of TCO-1, conducted at room , 
temperature between the voltage limits of 0 V (in- 2 
sertion) and 1.2 V (release) versus a Li counter- 3 E o,O electrode. The cell voltage and its limits are values , 
monitored by the external circuit (they are not - 0 . 5 1 . . . . . . . . . . . ~  - 
equivalent to OCV). The electrochemical cell 0  20 40 60 80 100 120 

Chargedischarge cycle time (hours) 
com~rised a TCO-mounted workina electrode -~ - " ~ ~ ~~- 

and Li counterelectrode dipped in an electrolyte composition containing EC and DEC (1 :1) as solvents 
and UPF, as the electrolyte. Data wereextracted forthe first four cycles. After the second cycle, insertion 
and release were entirely reversible, as the prolonged cycle test demonstrates (Fig. 5). 
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mA.hour/g, open  circuit  voltage ( O C V )  
versus Li/Li- of 0.06 V]. Th i s  deep level of 
Li doping produced a chemical shift of 1 0  
parts per mill ion (ppm) ,  small enough t o  
assign t h e  Li residing in  t h e  TCO matrix - - 
to  a highly ionic state.  W e  compared t h e  
N M R  chemical shift of TCO with  those of 
pure S n O  and  S n  metal  ( b o t h  in  crystal- 
l ine form) (Fig. 4B)  as a funct ion  of t h e  Li 
insert ion dep th  (Li /Sn molar ratio);  it is 
evident  from t h e  laree chemical  shifts t ha t  " 

Li insert ion in to  crystalline S n O  of isotro- 
o i c  structure tends t o  form metall ic Li t o  
a n  extent  close t o  t h e  case of Sn-Li  alloy 
formation in S n  metal .  

O n  the  basis of the  above analysis, it is 
appropriate to  look into the  molecular struc- 
ture of the  Li-inserted state of T C O .  It is 
considered tha t  the  participation of Li-ion 
coordination in reversible charge-discharge 
reactions takes place a t  the  bonding orbital 
of S n - 0 ,  accompanied by partial electronic 
reduction of both  Sn(I1) and Lit ,  but no t  
forming a state of metallic Li, as evidenced 
by 'Li-NMR data (1 2).  T h e  chemical poten- 
tials of these Li ions. which determine their 
charge-discharge equilibriiuin potentials, may 
no t  be eauivalent as a result of discreoancies 
in the  Sn-Li separation and in the  electronic 
densities of S n  and Li, both beine affected bv " 
the  surrounding metal oxide components. 
T h e  anisotrooic random network of the  elass - 
structure accounts for why there is a wide 
~ o t e n t i a l  distribution in Li uotake and re- 
lease as exhibited by the  gentle slope in the  
charge-discharge curve (Fig. 3). 

T h e  charge-discharge ' cyclability of 
T C O s  as anode materials of a practical 

"rocking-chair" type of rechargeable battery 
was assessed by adopting a LiCoOz elec- 
trode as a Li-intercalating cathode active 
material. I n  this test, a TCO anode with t he  
composition Sn,,,B,,5P, ,A1,,4M, 103,i was 
chosen,  where  M is a n  alkaline metal  
( such as potassium) mixed in  t h e  glass 
matrix as a dopant  to  reinforce cyclability 
(13 ) .  W e  prepared L iCoOz  powder (aver- 
age particle size, 6 p m )  hy calcining a 
powder mixture of C o 3 0 4  a n d  L i 2 C 0 ,  
(Co/Li  molar ratio = 1.0) a t  800°C  for 8 
hours and  formed it in to  a conduct ine  " 
pellet  wi th  a PTFE binder a n d  acetylene- 
black powder. T h e  LiCo02-based ca thode 
was combined wi th  t h e  TCO-based  anode 
a t  a n  optimized mass ratio t o  effect Li 
insert ion balance.  T h e  battery thus fabri- 
cated was subjected t o  a charge-discharge 
cycle over a voltage window between 4.1 
and  2.8 V .  Th i s  cycling test showed t h a t  
90% of t h e  init ial  reversible capacity of 
t h e  battery was retained after 100 cycles 
(Fig. 5) .  These  results corroborate t ha t ,  
along wi th  LiCoOz,  t h e  TCO-based oxide 
anode  performs highly reversible a n d  sta- 
ble charge-discharge reactions and  is suit- 
able as a n  anode in  high-energy recharge- 
able batteries. 

T h e  large Coulombic  capacity and  
good cyclic durability of TCO, backed by 
t h e  safe Li-storage mechanism,  provides a 
powerful tool i n  t h e  design of rechargeable 
batteries whose capacity exceeds t h a t  of 
nickel hydride batteries (400  W.hours/li- 
te r )  t h a t  use hydrogen-storage alloys of t h e  
largest capacity. T h e  TCO anode c a n  suc- 
cessfully be  coupled wi th  several available 

Fig. 4. (A) Nuclear magnetlc reso- 
nance spectrum (NMR) of 7L1 for 
TCO after LI lnsertlon to a molar ra- 
tlo Ll/Sn = 8. The LI was electro- I 1  I 

chemically inserted into TCO in the ~ I 1 , 101 I / I 

cell composition as  in Fig 1 (6) ' , / 1 
Chemical shifts of 7Li-NMR s ~ e c t r a  200 l o o  0 -100 -200 ,= O , - 
for TCO (C) and reference materials Chemical shift (ppm) $ r n - 2 ‘  

Sn metal (A) and SnO (0) as  a func- i 
tlon of Ll/Sn molar ratlo In the course of electrochemical Li 
insertion. Measurement was carried out at room temperature Molar ratio LilSn 

on a NSL-300 NMR spectrometer (Nippon Bruker) using LiCl as  a standard. The results demonstrate the 
highly ionic state of Li being retained in TCO up to Li/Sn = 8 in contrast to Sn and SnO. which cause 
large chemical shifts. 

Fig. 5. Cyclablllty of a TCO (anode)/EC+DEC-LIPF,/LIC~O, 
(cathode) "rocking-char' type of battery (solld Ilne) The battery 
was charge-discharge cycled over a cell-voltage wlndow of be- $ l # b ~ ~ ~  
tween 4 1 V (charge) and 2 8 V (dlscharge) at a constant current 
correspondng to 0 5 C (75) (2 mA per 6 3 mg of dscharged 5 60 
mass of TCO) In ihls cycllng, voltage llmlts are controlled on the ,$ 401 
bass  of OCV whlle chargng and clrcult voltage (ncudlng a 

of charge corresponds to 0 10 V versus Lf /L a s  the potental of 
it 20L voltage loss by net resstance) whlle dscharglng the hmlt voltage 0 

0 20 40 60 80 100 

the TCO anode Thls result IS compared w~th reference data Number of cycles 

(dashed n e )  for a slmllar battery In whlch the anode actlve materla was replaced wlth a SnO powder 
whlch, as  revealed by the 'L-NMR experlmenta data (Fg 4), lacks the onlc s t a b t y  of LI 

ca thode active materials, including Li- 
C o o z ,  LiNiOz,  LiMnzO4,  a n d  L iMnO,  
(14 ) .  Using cylinder-type batteries wi th  a 
series of TCO-based  anodes a n d  L i C o 0 2  
cathodes,  we have  thus  far confirmed t h a t  
batteries possessing a n  output  voltage of 
2.5 t o  4.2 V, a n  energy density of 420  
W.hours/liter, and  good cyclic durability 
are feasible. 
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