
the  spindle also supports a general role for 
the  A P C  in regulating the  mitotic appara- 
tus (7). , , 

Our  findings also broaden the  scope of 
cellular processes under A P C  control. In  
addition to  controlling the  abundance of 
mitotic cyclins, t he  A P C  regulates sister 
chromatid cohes~on,  the  cellular D N A  con- 
tent,  and the  function of the  mitotic spindle 
(5, 10-12). T h e  A P C  proteolytic system 
may therefore be a global cell-cycle regula- 
tor much like the  cyclin-dependent kinases. 
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Combinatorial Control Required for the 
Specificity of Yeast MAPK Signaling 

Hiten D. Madhani and Gerald R. Fink 

In yeast, an overlapping set of mitogen-activated protein kinase (MAPK) signaling com- 
ponents controls mating, haploid invasion, and pseudohyphal development. Paradox- 
ically, a single downstream transcription factor, Stel2, is necessary for the execution of 
these distinct programs. Developmental specificity was found to require a transcription 
factor of the TENATTS family, Tecl, which cooperates with Stel2 during filamentous 
and invasive growth. Purified derivatives of Stel 2 and Tecl bind cooperatively to en- 
hancer elements called filamentation and invasion response elements (FREs), which 
program transcription that is specifically responsive to the MAPK signaling components 
required for filamentous growth. An FRE in the TECl promoter functions in a positive 
feedback loop required for pseudohyphal development. 

Because common signaling components such 
as the MAPK cascade respond to a large num- 
ber of different stimuli, it is not clear how 
specific signals are produced. 111 Saccharomyces 
cerevisiae. elements of the MAPK nathrvav 
required for the mating pheromone response 
are also required for haploid invasive growth 
and diploid pseudohyphal development. 
These shared factors include Ste20, S t e l l ,  
Ste'i, and Ste l2  (1, 2). The  first three act in 
sequence and are hoinologs of the mammalian 
kinases PAK (p21-activated kinase), MEKK 
(MAP kinase kinase kinase), and klEK (MAP 
k~nase k~nase),  respectively (3). T h e  tran- 
scription factor Ste l2  is a terminal compo- 
nent  of these signaling cascades, function- 
ine downstream of the  kinases to  drive u 

either sexual differentiation or filainentous 
a~nd invasive growth (3). I11 inamtnalian 
cells, myriad stimuli activate MAPK path- 

Wh~tehead lnst~tute for B~omedica Research, 9 Cam- 
brdge Center. Cambrdge. MA 021 42. USA. 

ways, yet only a handful of target transcrip- 
tion factors have been identified (4). 
Therefore, 11.2 addressed the  question of 
how a common target of MAPK signaling 
pathlvays, S te l2 ,  can direct more than one 
distinct developmental program. 

S t e l 2  binds cooperatively to  pheromone 
response eleinents (PREs) of the  consensus 
sequence T G A A A C A  (5, 6), and two or 
more of these elements are necessary and 
sufficient to program pherornone-respon- 
sive transcription (7). Because S t e l 2  can 
act alone during mating, we thought that 
there might exist a pathway-specific tran- 
scription factor that retargets S t e l 2  during 
filainentation and invas~on  through coop- 
erative D N A  binding (combinatorial con- 
trol). T h e  expression of the  reporter gene 
FG(TyA)::lacZ depends specifically o n  the  
MAPK signaling coinponents that promote 
filamentous and invasive growth (8). Tran- 
scription of FG(TyA)::lacZ is driven by a 
fragment of the  retrotransposon T y l ,  whose 
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expression requires the TECl gene (9). 
TECl  is also necessary for pseudohyphal 
and haplold invasive growth ( l o ) ,  which 
ralses the possibility that Tec l  functions 
within the filamentous signaling pathway. 
Tec l  contains the col~served TEA or 
ATTS DNA binding domain, which 1s 
shared by several eukaryotic transcription 
factors, includ~ng human TEF-1 and As- 
p e r ~ l l u s  abaA (1 1 ). TEF-1 binds to the se- 
quence CATTCC, whereas abaA binds to 
the sequences C A T T C C  and CATTCT 
(12). We term these conserved elernents 
TEAIATTS consensus sequences (TCS).  
The Ty l fragment in FG(TyA) : : lac2 con- 
tains a binding site for Stel2 (a PRE) and 
an adjacent presumptive binding site for 
Tec l  (a  TCS);  the two sites are separated 
by 14 base pairs (bp). We call this cotnpos- 
ite DNA elernent (PRE plus TCS)  a fila- 
mentation and invasion response elernent 
(FRE). This region of Ty1 binds to a Stel2- 
containing co~nplex in crude extracts (6) .  
Thus, Stel2 and Tec l  might cooperate to 
promote pathway-specific tra~lscription of 
FG(TyA) : :lacZ. 

To test this, \ve placed the 27-bp Tyl 
FRE upstream of an enhancerless CYCl : : lac2 
reporter gene to create FRE(Ty1 J : :  lac2 
(13). This construct was expressed consti- 
tutively in haploid cells grown in rich 
medium, which is permissive for invasive 
growth (Fig. I A ) .  Mutation of either the 
PRE ( T G A A A C G  to A C T T A C G )  or the 
T C S  ( C A T T C T  to CAAACT)  reduced 

expresslon of the reporter (Flg. 1A) .  Mu- 
tations in elements of the pheromone re- 
sponse pathway that are requlred for hap- 
loid invasion and diploid pseudohyphal 
development also reduced expression; the 
ste20 mutant shelved a tnoderate reduction 
and stel 1, ste7, and stel2 mutants exhlb- 
ited stronger defects (Fig. I A ) .  Disruption 
of the TEC1 gene also reduced FRE activ- 
lty (Fig. I A ) .  111 contrast, lnutations In 
components of the pheromone response 
pathway that are not required for filamen- 
tation and invasion, including St22 ( the 
a-pheromone receptor), St24 ( the  p sub- 
unit of the receptor-coupled guanine nu- 
cleotide binding protein), St25 (a  protein 
that  tethers components of the MAPK 
cascade), and Kssl or Fus3 ( the redundant 
MAPKs required for mating), did not re- 
duce FRE activity. 

To  determine whether the FRE is re- 
sponsive to signals for pseudohyphal devel- 
oplnent in diploid cells, rve introduced 
FRE(Ty 1) : :lacZ into this cell type. Activity 
of the FRE was one-thirteenth of that in 
haploid cells (Fig. 1 8 ) .  Much of this reduc- 
tion was overcotne by activation of the 
pathway with the hypermorphic allele 
STEl l-4. The  activation was abrogated by 
mutation of the PRE or T C S  or bv mutation 
of the downstream signaling components 
STE7 and STEl2. Mutation of TECl also 
blocked the activation of the renorter. 
which supports a do\vnstream role (relative 
to S t e l l )  for Tec l .  
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We identified elements similar to the 
Tyl FRE in several genes required for fila- 
InentatLon a~nd invasion (14). One exlsts in 
the TECl promoter itself, raising the pos- 
sibility that TECl  participates in an auto- 
regulatory loop. In the TECl FRE, the ori- 
entatloll of the PRE and T C S  is reversed 
co~npared to that of the Ty1 FRE, and the 
spacing between the ele~nents is reduced 
frotn 14 to 4 bp. 

We placed the 17-bp TECl  FRE up- 
stream of CYCl : : l a c 2  to yield FRE- 

Fig. 2. The TECl FRE confers filamentous path- 
way-specific gene expresson. (A) Expression of 
FRE(TEC7)::lacZ In haploid a cells. (B) Expression 
of FRE(TEC1)::iacZ In a/m dplod cells. 



(TEC1)::lacZ (15). Like FRE(Tyl)::lacZ, 
this construct was expressed in haploid cells 
in a PRE- and TCS-dependent manner 
(Fig. 2A; the PRE mutant is TGAAACA 
to ACTTACA and the TCS mutant is 
CATTCC to CAAACC). Mutation of 
STE20, STEII, STE7, STEI2, and TECl 
reduced expression of FRE(TEC1) : :lacZ, 
whereas mutation of components specific to 
the pheromone-responsive MAPK pathway 
did not. In the fus3 mutant, expression was 
increased fourfold, whereas the kssl mutant 
resulted in reduced expression (71% of the 
wild type; Fig. 2A). The kssl fus3 double 
mutant exhibited expression that was slight- 
ly greater than that of wild-type cells. This 
pattern mimics the effects of these mutations 
on haploid invasive growth: fus3 mutants are 
hyperinvasive, kssl strains exhibit a weak 
invasion defect, and the double mutants in- 
vade approximately as well as does the wild 
type (2). Expression of FRE(Ty1)::lacZ was 
not modulated in this way, so the specific 
arrangement of the PRE and TCS in the 
FRE might be important for the appropriate 
response to Fus3 and Kssl. 

As with FRE(Tyl)::lacZ, expression of 
FRE(TEC1) : :lac2 in diploid cells was lower 
than that in haploid cells (Fig. 2A). Again, 
expression was increased by STEII-4 
(eightfold), and this induction was blocked 
by mutation of the PRE and TCS or by 
mutation of the downstream signaling com- 
ponents STE7, STEI 2, or TECI. 

To  establish the relevance of the TECl 
FRE to the transcriptional and biological 
activities of the full-length TECl promot- 
er, we mutated the PRE and TCS, either 

together or individually, in the native pro- crease in expression of TECI ::lac2 (Fig. 
moter (16) and examined the effects of 3A). This increase was largely blocked by 
these mutations on the activation of a the PRE-TCS double mutant as well as by 
TECI ::lac2 fusion gene in diploid cells the PRE and TCS single mutants. We also 
(17). Activation of the MAPK pathway introduced a high-copy plasmid contain- 
with STEI 1-4 produced a fourfold in- ing the TECl gene into cells harboring 

F, free. 32P-labeled Tyl 
FRE was applied to the 
gel after incubation with 
the indicated compo- 
nents (20). Approximate 

Competitor 

Fig. 4. Cooperative bind- A MBp + 

ing of Stel2 and Tecl MBP-TECI + + 

derivatives to FREs. (A) MBP-Stel2 + + + - 
Native gel analysis of pro- P I 

a ? 6 E i  
tein-FRE complexes. An E ~ E K ? ;  
autoradiogram of a non- 
denaturing acrylamide .-. - - -  
qel is shown. B, bound; 

sili 
- * - -  

protein concentrations 
were as follows: MBP, 5 *m*sh 11.- - - - -  m E--$i 
x 1 0-9 M; MBP-Tecl ,6 - _ - -  - 

; M Y  - 
x 10-lo M; and MBP- 
Stel2,6 x 10-10M.32P- 
labeled Tyl FRE concen- 
tration was approximate- - - - - - - -  
ly 3 x 10-lo M. Unla- _ . . - -  
beled competitor DNAs 2 3 4 5 6 7 8 9 1 ~  - - - -  - - - -  
were added as indicated 1 2 3 4  1 2 3 1  

and are labeled as fol- 
lows: TY1, wild-type Tyl FRE; TY1 -P, PRE mutant; TY1 -T, TCS mutant; TEC1, wild-type TECl FRE; 
TEC1-P, PRE mutant; and TECI -T, TCS mutant. (B) Deoxyribonuclease I footprint analysis of protein 
binding to the Tyl FRE. Shown is an autoradiogram of a denaturing polyacrylamide gel (8%). Reactions 
contained a 32P-end-labeled probe derived from the FRE(Ty1)::lacZ construct (21). Lanes 1 and 4 
correspond to reactions lacking MBP-Tecl and MBP-Stel2; lanes 2 and 3 correspond to reactions 
containing both proteins. The positions of the TCS (open box) and of the PRE (solid box) are indicated. 
Arrows indicate a pair of hypersensitive sites induced between the PRE and TCS. (C) Deoxyribonuclease 
I footprint analysis of protein binding to the TECl FRE. Analysis was performed as in (B), except that the 
probe was derived from FRE(TEC1)::lacZ. 

Fig. 3. Requirement of A 
the TECl FRE for signal- 75 , 
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incubated for 5 days at 30°C. 



the reporter. Overexpression of TEC1 in- 
creased expression of TEC 1 : :lac2 approx- 
imately twofold. This effect was blocked 
by  nuta at ions in the FRE, which supports 
the positive feedback model. 

T o  ascertain the importance of the 
TEC1 FRE to pseudohyphal development, 
a single copy of the native TEC1 gene 
with wild-type or mutant promoter se- 
quences was introduced into a homozygous 
tecl/tecl mutant diploid by integrative 
transformation (18). T h e  wild-type pro- 
moter allele colnple~nented the pseudohy- 
phal growth defect of the null allele (Fig. 
?B). The  PRE-TCS double mutant 
blocked filament production, as did the 
PRE and T C S  single mutants. In the pres- 
ence of the wild-type allele, STEI 1-4 etl- 
hanced fila~uentation, whereas the activa- 
tion of filamentation was blocked by the 
tecl null allele. The  PRE and T C S  mu- 
tants also blocked the induction of fila- 
mentation by STEI 1-4. 

We examined the ability of purified 
derivatives of S t e l 2  and Tec l  to interact 
with FREs in vitro. Full-length S te l2  and 
Tec l  were expressed in Escherichin coli as 
protein fusions with maltose-binding pro- 
tein (MBP). A FLAG peptide tag was 
added to the COOH-termini to aid in 
purification ( 19).  Binding of these pro- 
teins to the Tyl FRE was examined with 
native gel electrophoresis (Fig. 4B) (20) .  
No protein complex was observed upon 
incubation of a 3'P-labeled fragment con- 
taining the 27-bp Ty1 FRE with MBP, 
MBP-Tecl,  or MBP-Stel2 alone. Howev- 
er, incubation of the Ty 1 FRE with both 
MBP-Tecl and MBP-Stel2 resulted in  the 
appearance of a cornplex of lower mobili- 
ty. The  requirement of both proteins for 
complex foriuation implies cooperative 
binding. A 100-fold excess of the wild- 
type Ty1 FRE eliininated the formation of 
the complex, but the same amount of Ty1 
FRE containing mutations in  either the 
PRE or T C S  did not. A 100-fold excess of 
the unlabeled TECl  FRE also eliminated 
binding to the Ty 1 FRE (Fig. 4A,  lane 9), 
whereas TEC1 FREs containing point mu- 
tations in either the PRE or T C S  did not 
compete. 

We also performed deoxyribonuclease I 
(DNase I )  protection experiments with end- 
labeled fragments from the FRE(T) 1) : :lacZ 
and FRE(TEC 1 ) : :lac2 constructs (2 1 ). Incu- 
bation of the FRE(T)lj::lacZ or FRE- 
(TEC1j::lacZ probe with MBP-Tecl and 
MBP-Stel2 resulted in the protection of spe- 
cific nucleotides within the PRE and T C S  
(Fig. 4, B and C ) .  Binding to FRE- 
(Ty 1 ) : :incZ resulted in the appearance of a 
pair of adjacent hypersensitive sites between 
the TCS and PRE that tnay be indicative of 
a distortion in the DNA (Fig. 4B). 

Our data demonstrate that the appro- 
priate transcriptional response to overlap- 
ping, upstream, MAPK signaling compo- 
nents in yeast requires combinatorial con- 
trol. S te l2  can act as a homo~nultimer to 
promote pheromone-responsive transcrip- 
tion (7).  During filamentation and inva- 
sion, S t e l 2  acts with a second transcrip- 
tion factor, T e c l ,  to drive transcription 
that is specifically responsive to the 
MAPK pathway that promotes filamenta- 
tion and invasion. The  TEC1 FRE is nec- 
essary for normal pseudohyphal develop- 
ment, which establishes at least one role 
for S t e l 2  and Tec l  in the exnression of a 
gene involved in filamentation. Mating 
nheromone does not activate the MAPK 
pathway that leads to filamentation and 
invasion ( a ) ,  yet it activates Stel2.  Thus, 
the mechanism by which S te l2  is 
switched on  by the mating MAPKs, Fus? 
and Kssl, must not ouerate on  Stel2-Tecl  
complexes. T h e  inhibitory action of Fus? 
on  FRE-dependent transcription could 
also play a role in  preventing the activa- 
tion of Stel2-Tecl  during mating. Be- 
cause Fus3 and Kssl together are disoens- " 

able for filamentation and invasion (al- 
though individually they can modulate 
haploid invasion), there likely exists a 
MAPK equivalent that specifically acti- 
vates Stel2-Tecl  complexes. 
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