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Rotation and Magnetism of Earth's Inner Core 
Gary A. Glatzmaier* and Paul H. Roberts 

Three-dimensional numerical simulations of the geodynamo suggest that a super- 
rotation of Earth's solid inner core relative to the mantle is maintained by magnetic 
coupling between the inner core and an eastward thermal wind in the fluid outer core. 
This mechanism, which is analogous to a synchronous motor, also plays a funda- 
mental role in the generation of Earth's magnetic field. 

Three-dimensional (3D) numerical simu- 
lations of the geodynamo, the mechanism 
in Earth's core that generates the geomag- 
netic field, showed that a magnetic field 
with an intensity, structure, and time de- 
pendence similar to that of Earth's can be 
maintained by a convective model ( 1 ,  2 ) .  
The convection, which takes place in the 
fluid outer core surrounding the solid inner 

core, twists and shears magnetic field, con- 
tinually generating new magnetic field to 
replace that which diffuses away. The mod- 
el we describe here ( 2 )  assumes. the mass, 
dimensions, and basic rotation rate of 
Earth's core, an estimate of the heat flow 
out of the core, and, as far as possible, 
realistic material properties (3). 

Convection is driven by thermal and 
compositional buoyancv sources that devel- . , 
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the light constituent to be proportio~lal to 
each other and to the local cooling rate. 
The flux of the light constituent provides 
three times as much buoyancy as the latent 
heat flux. However. the vieor of the con- 
vection, the strength of theYmagnetic field, 
and the angular velocitv of the inner core 
are all ultimately determined by the ther- 
mal boundary condition at the core-mantle 
boundary. We prescribed a heat flow 
through it of 7.2 TW, which is geophysi- 
cally realistic (6), 5.0 TW of this being the 
heat conducted down the adiabatic part of 
the temperature gradient. 

The inner core in our model is free to 
rotate about the geographic axis in response 
to the magnetic and viscous torques to 
which the outer core subiects it (7) .  We . , 

found that the inner core rotates relative to 
the mantle in the eastward direction, at an 
angular velocity of a,, - 2" to 3" per year 
(8). Our prediction of eastward inner core 
rotation is consistent with two subsequent, 
independent analyses of seismic data: Song 

s I I I I 
6 9 12 15 

Time ( lo3  years) 

Fig. 1. Eastward angular velocity of the inner core 
relative to the mantle for the last 15,000 years of 
our simulation. 

and Richards (9) first estimated Qlc - lo  
per year, and then Su et al. (10) estimated 
a,, - 3" per year. Considering the uncer- 
tainties in our model and material proper- 
ties and in the seismic data and inner core 
anisotropy, these preliminary theoretical 
and observational results are in reasonable 
agreement. 

For a typi~al 15,000-year interval, our 
mean arc is fllc - 2.6" per year (Fig. 1). 
The standard deviation about that mean is 
0.4"/year, the root mean square of a,, is 
fllcrm" 0,005" per year2, and the fime 
scale of variations of a,, is T,, = a,,/ 
flICrm5 - 500 years. However, there is also 
a distinct 3000-vear ~e r iod  with an a m ~ l i -  
tude variation df about a ?0.5" per ;ear 
(Fie. 1). . - ,  

To explain the sense of rotation of the 
inner core relative to the mantle. it is helo- 
ful to recognize that the inner core plays a 
central role in the dvnamics of the outer 
core (1 1). Consider an imaginary circular 
cylinder coaxial with the rotation axis and 
touching the inner core at its equator. This 
"tangent cylinder" divides the outer core 
into an interior region I and an exterior 
region E. The interior region consists of a 
northern polar region IN and a southern 
polar region I s .  

Convection in a rapidly rotating body 
of fluid, like Earth's outer core, takes the 
form of Taylor columns, which have axes 
parallel to the rotation axis ( 1  2) and fluid 
flowing in planes perpendicular to it. 
However, when the fluid flow generates a 
strong magnetic field that in turn feeds 
back onto the flow by means of Lorentz 
forces, the flow structure is somewhat dif- 

ferent. 111 our simulation (2 ) ,  several non- 
axisymmetric magnetically suppressed 
Taylor columns exist in E, whereas in I, 
although the flow is also mainly in planes 
perpendicular to the rotation axis, it is 
nearly axisymmetric and sheared parallel 
to the rotation axis. Consequently, heat 
and light elements are more efficiently 
transported from the inner core boundary 
to the core-mantle boundary by the non- 
axisymmetric flows in E than by the nearly 
axisymmetric flow in I, which takes a more 
indirect, helical route to the core-mantle 
boundary. As a result, in our simulation 
(2) the axisymmetric parts of the pertur- 
bations of the entropy and light constitu- 
ent (relative to their constant basic-state 
values) at a given radius near the inner 
core boundary are roughly five times great- 
er in I than their respective values in E. 
The associated buoyancy force in I pro- 
duces an outward flow along the rotation 
axis, which (because of mass conserva- 
tion) requires a flow directed toward the 
rotation axis near the inner core boundary 
and away from the axis near the core- 
mantle boundary. This axisymmetric part 
of the flow is called the meridional circu- 
lation (Fig. 2A). Because the angular mo- 
mentum of fluid parcels is approximately 
conserved, fluid flowing toward the rota- 
tion axis just outside of the inner core 
boundary, in IN and I,, is spun up; fluid 
flowing away from the axis near the core- 
mantle boundary is spun down. The result- 
ing zonal flow in I is eastward near the 
inner core and westward near the mantle, 
relative to the fluid in E and to the mantle 
(Fig. 2B). In atmospheric contexts, these 

Fig. 2 (left). Snapshots in A 
the meridian plane of (A) the 
axisymmetric meridional flu- 
id o w  and (B) the aisym- 
metric zonal fluid flow. The 
direction of the arrows in (A) 
are parallel to the flow; their 
length is proportional to the 
flow speed. Contours of 
constant angular velocity w 
are shown in (B); solid lines 
correspond to eastward 
flow relative to the mantle, 
and dashed lines, to west- 
ward flow. The maximum 
meridional flow in (A) is 6 x 

mls; the maximum an- 
gular velocity in (B) is 5' per 
year (contour interval is 0.5" 
per year). Of particular inter- , 

est is the contour line adja- 
cent to the inner core boundary, which indicates that the inner core is moving meridional magnetic field and (B) the axisymmetric zonal magnetic field. The 
eastward. Note also that the equatorial region of the outer core has a weak magnetic lhnes of force are counterclockwise in (A), and the maximum mag- 
westward angular velocity, which helps to conserve total angular momentum netic intensity is about 25 mT. The contours in (B) are solid for eastward- 
of our model Earth and is partially responsible for the typical 0.2" per year directed magnetic field and dashed for westward-directed field; the maxi- 
westward drift that our magnetic field displays at the core-mantle boundary. mum magnetic intensity is about 13 mT(l -mTcontour intervals). Of particular 
Fig. 3 (right). Snapshots in the meridian plane of (A) the axisymmetric interest is the expulsion of zonal field from much of the inner core. 
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zonal jets would be described as part of a 
"thermal wind" (13), but because strong 
magnetic fields also exist in the core, es- 
pecially inside the tangent cylinder, the 
term "thermal wind" is not precisely cor- 
rect. However, the strong zonal (east- 
west) fields (Figs. 3B and 4) are not af- 
fected by the zonal velocity because there 
is little motion across those field lines. 
The differential zonal flow does shear the 
strong north-south (meridional) fields 
(Figs. 3A and 4), but the concentration of 
these fields along the rotation axis mini- 
mizes this effect. 

In assessing the effect of these eastward 
jets on the motion of the inner core, it is 
helpful to have two physical pictures in 
mind. The first is based on Alfven's the- 
orem, which states that magnetic lines of 
force move with a perfectly conducting 
medium as though frozen to it. The core is 
not a perfect electrical conductor, so this 
theorem does not apply precisely to Earth. 
Nevertheless, it provides a qualitative de- 
scription of electromagnetic induction in 
a moving fluid, in terms of which lines of 
force passing through the jets tend to be 
carried eastward with the fluid. These 
lines of force permeate the inner core 
(Figs. 3A and 4), and if there is relative 
motion between the inner core and the 
jets, the lines of force will lengthen, ac- 
cording to Alfvkn's theorem. 

The second physical picture describes 
the dynamical effects of a magnetic field B 
in terms of Faraday-Maxwell stresses, in 
which magnetic lines of force are in a state 
of tension. Any relative angular displace- 
ment that lengthens the lines of force link- 
ing the solid inner core to the fluid outer 
core above it is resisted by that tension; so, 

Fig. 4. Snapshot of magnetic lines 
of force in the core of our simulated 
Earth. Lines are gold (blue) where 
they are inside (outside) of the inner 
core. The axis of rotation is vertical 
in this image. The field is directed 
inward at the inner core north pole 
(top) and outward at the south pole 
(bottom); the maximum magnetic 
intensity is about 30 mT. 

on average, the inner core corotates with 
the fluid above it. This mechanism has an 
analogy in electrical engineering: the syn- 
chronous motor, where the inner core rep- 
resents the rotor of an electric motor that is 
locked synchronously to the eastward prop- 
agating magnetic field at the base of the 
fluid core, created by the convective dyna- 
mo operating above it (1, 2). 

The "corotation" between the inner core 
and the fluid lying just above it (14) is a 
generalized view. At any given time, the 
solid inner core has onlv one angular veloc- 

u 

ity, Rlc, but the angular velocity w of the 
fluid jets is a function of position. By coro- 
tation we mean that the inner core is rotat- 
ing at some weighted average of the east- 
ward fluid flow above it such that the net 
torque on the inner core about the rotation 
axis is nearly zero. Because the peak zonal 
flow occurs near the rotation axis, the inner 
core usually rotates more slowly than the 
fluid above it in the polar regions and faster 
than the fluid above it in the equatorial 
region (Fig. 2B). On  areas of the inner core 
surface where B,B4 > 0, the tension of the 
magnetic field lines increases the eastward 
R,,; where B,B4 < 0, it decreases it (7). 
Consider the longitudinally averaged field 
structure in the snapshot of Fig. 3. The 
outward-directed field B, at mid- and high 
latitude in the northern hemisphere (Fig. 
3A) is sheared into eastward-directed field 
B4 (Fig. 3B); the opposite occurs in the 
southern hemisphere. However, in both 
places the product B,B4 > 0, which exerts a 
local. eastward maenetic stress on the inner " 
core. Therefore, the fluid flow and magnetic 
coupling at the inner core boundary are 
fundamental to both the rotation of the 
inner core and the generation of the mag- 

netic field in the outer core. 
Magnetic field is also generated by the 

differential zonal flows (Fig. 2B) in IN and Is 
that shear the meridional fields (Fig. 3A) into 
zonal fields (Fig. 3B). This field generation 
maintains a helical magnetic field inside the 
tangent cylinder (Fig. 4), a combination of 
the strong meridional field near the rotation 
axis and the strong zonal field near the tan- 
gent cylinder. Recall that the flow is also 
mainly meridional near the rotation axis and 
zonal near the tangent cylinder in order to 
minimize distortion of the field. Our dynam- 
ically consistent simulations (1, 2) suggest 
that the geodynamo develops 3D flow and 
field structures that produce a delicate, non- 
linear balance between the generation of new 
field by flow structures that twist and shear it 
and the avoidance of too much resistance to 
the flow by field structures that are almost 
force-free in places. 

The difference in the structure of the 
magnetic field between the inner core and 
the outer core (Fig. 4) may be understood in 
the following way: The electromagnetic 
time constant T,, of the inner core is of the 
order of lo3 years (15), so magnetic fields in 
the outer core that vary on the time scale of 
the convection (lo2 years) cannot pene- 
trate far into the inner core. In particular, 
the time-dependent asymmetric fields, even 
those of large spatial scale, do not penetrate 
deeply. However, slowly varying axisym- 
metric fields, such as those associated with 
the axial dipole of the Earth, have time to 
penetrate the inner core completely (Figs. 
3A and 4). Because of ohmic dissipation, 
the associated electric currents deep within 
the inner core are almost zero, so these 
slowly varying axisymmetric magnetic fields 
are good approximations of "potential 
fields." Zonal fields generated by the global 
departure of w froi Rlc do not penetrate 
far into the inner core because the time 
scale for reestablishing corotation is very 
short, and zonal fields created by local de- 
partures of w from n,, do not penetrate far 
into the inner core because of their small 
spatial scales (Fig. 3B). Therefore, the only 
fields that persist deep in the inner core are 
the nearly axisymmetric, potential-like 
fields, which are nearly parallel to the rota- 
tion axis (Fig. 4). These are the fields that 
provide the magnetic coupling between the 
inner and outer cores. However, although 
their maximum strength at the inner core 
boundary can be as high as 10 mT, they are 
concentrated in the polar regions (Fig. 4) 
and so have small moment arms. Therefore, 
the restoring torques that maintain corota- 
tion are not as large as they would otherwise 
be. 

This explanation of why a time-aver- 
aged eastward Rlc is required to bring 
about a statistically steady state in which 
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the time average octhe  magnetic torque 
on the inner core T, is zero i g n o r ~  the 
time-average of the viscous torque r, on 
the inner core (7). With a nonzero-fluid 
viscosity, Rlc adjusts itself so that r, + - 

T, = 0, implying that, because T, drags 
the inner core eastward, r, must be acting 
westward. However, even though the fluid 
viscositv in our models ( 1 ,  2 )  is several , , 

orders df magnitude greater than is likely 
for the real Earth, the viscous torque on 
the inner core has little effect. 

To demonstrate its effect, we replace our 
no-slip condition on the zonal flow at the 
inner cqFe boundary by a viscous stress-free 
condition, which makes T, = 0, and then 
continue the integration (16). The con- 
tours of constant o near the inner core no 
longer resemble those in Fig. 2B but, in- 
stead, all intersect the inner core boundarv. 
Apart from this, the solution strongly re- 
sembles the original one (2). The mean CLlc 
is still eastward, and'the magnitude of T, 
about its zero time-average is on the order 
of 1016 N m. This value is small enough that 
a,, remains relatively constant on a time 
scale of decades. It is also small in the sense 
that the large rocal magnetic stresses nearly 
cancel out when integrated over the inner 

'3 

core boundary. That is, when we integrate 
the absolute value of the moment of the 
magnetic stress I B,B+ I /po [instead of B,B+/ 
po (7)] over the inner core boundary, we 
consistently obtain values three orders of 
magnitude greater than r,. 

In a further experiment, still using the 
V~SCOLIS stress-free boundary condition, we 
instantaneously reset CLlc to zero and con- 
tinue the integration (Fig. 5). As the radial 
field becomes sheared by the differential 
motion, the restoring magnetic torque 
quickly increases, attaining a maximum of 
6 x loL8 N m within a couple months. 
After about 2 years, corotation is complete- 
ly reestablished (Fig. 5), and the magnitude 
of T, is again on the order of loL6 N m with 
a zero mean value. 

This s im~le  test illustrates the "svnchro- 
nous motor; mechanism and how short a 
time is required to spin up Earth's inner core 

Fig. 5. Eastward angular velocity of the inner core 
relative to the mantle during the last 5 years of a 
test run for which no VISCOUS torque was acting on 
the inner core. After instantaneously setting n,, to 
zero, the magnetic torque reestablishes corota- 
tion within about 2 years. 

by magnetic torque alone compared with its 
viscous spin-up time (-lo4 years). This 
2-year magnetic spin-up time is also short 
compared with the magnetic diffusion time 
for the inner core, T~~ - lo3 years (15). 
Another way to look at this is to realize that 
more than 99% of the energy of the magnet- 
ic field is inside the core (10% in the inner 
core) ( 1 ,  2), which is typically 10,000 times 
more energy than the kinetic energy of the 
rotation of the inner core relative to the 
mantle. In addition, our simulation predict- 
ed a time-dependent CLlc (Fig. 1) in rough 
agreement with recent seismic analyses (9, 
10) without our model Earth spinning down; 
that is, we neglected the lunar tidal forces on 
Earth and instead constrained the total an- 
gular momentum of our inner core, outer 
core, and mantle to be constant (7). 

Earth's angular momentum is, however, 
slowly decreasing because of tidal forces; it 
has been suggested (10) that the super- 
rotation of the inner core may be the result 
of a viscous time lag relative to the spin 
down of the mantle. However, this expla- 
nation relies only on the small viscous 
torques at the boundaries of the fluid core 
and ignores the much larger effects of rotat- 
ing convection and magnetic coupling. For 
the reasons stated above, we feel that the 
synchronous motor mechanism plays a 
much greater role in determining the super- 
rotation of Earth's inner core than would a 
viscous time-lag mechanism. Also, unlike 
the viscous time-lag mechanism, which im- 
plies a monotonically decreasing inner core 
rotation rate, our mechanism (Fig. 1) sug- 
gests that Earth's inner core has spun both 
faster and more slowly at times in the past 
than it is spinning today and predicts that it 
will spin both faster and more slowly in the 
future according to the evolving magneto- 
hydrodynamics of Earth's fluid core. 
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Tomography of the Source Area of the 
1995 Kobe Earthquake: Evidence for 

Fluids at the Hypocenter? 
Dapeng Zhao*, Hiroo Kanamori, Hiroaki Negishi, Douglas Wiens 

Seismic tomography revealed a low seismic velocity (-5%) and high Poisson's ratio 
(+6%) anomaly covering about 300 square kilometers at the hypocenter of the 17 
January 1995, magnitude 7.2, Kobe earthquake in Japan. This anomaly may be due to 
an overpressurized, fluid-filled, fractured rock matrix that contributed to the initiation of 
the Kobe earthquake. 

T h e  17 January 1995, magnitude (M)  7.2, 
Kobe (Hyogo-Ken Nanbu) earthquake was 
the most damaging earthquake to strike 
Japan since the Kanto earthquake in 1923 
if ). The Kobe earthauake occurred in an 
area with complex structure including nu- 
merous active Quaternary faults that have 
produced many large historical earth- 
quakes (2 ) .  The permanent seismic net- 
works in southwestern Japan (3) and many 
portable stations deployed following the 
Kobe mainshock 14) recorded thousands ~, 

of aftershocks, which provide arrival time 
and waveform data for the determination 
of detailed crustal structure in the source 
area of the Kobe earthquake. Some previ- 
ous tomographic studies found that some 
earthquake nucleation zones showed high- 
er velocities than the surrounding country 
rock. These high velocity zones may rep- 
resent competent parts of the fault zones 
or may indicate regions of transition from 
stable to unstable sliding (5). Other stud- 
ies found that nucleation zones had low 
velocities and a high Poisson's ratio ( u )  
that suggested the existence of overpres- 
surized fluids (6 ,  7). We conducted an 
investigation of the seismic structure in 
the Kobe earthauake source area to under- 
stand what may have triggered this earth- 
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quake and how the rupture proceeded after 
initiation. 

We used the tomographic method of 
Zhao et al. (8) to determine the three- 
dimensional (3D) P- and S-wave velocity 
(V,, V,) and o distribution maps in the 
source area of the Kobe earthquake. We 
used 3203 Kobe aftershocks and 431 local 
micro-earthquakes that generated 64,337 P- 
and 49,200 S-wave arrival times (Fig. 1). 
Most of the events were located in and 
around the rupture zone of the Kobe earth- 
quake [the zone extends about 130 km 
northeast from the southern part of Awaji 
Island to Lake Biwa (Fig. I)]. All the events 
were recorded by more than 15 stations, and 
the hypocenter locations are accurate to 2 1 
to 2 km (4, 9). The data were recorded by 
37 permanent stations (3) and 30 portable 
stations that were set up following the Kobe 
mainshock (Fig. 1B) (4). The picking accu- 
racy of P- and S-wave arrival times is 0.05 to 
0.15 s (3, 4). 

Large V, and V, variations of up to 6% and 
u variations of up to 10% were revealed in the 
Kobe rupture zone (Figs. 2 to 4). The tomo- 
graphic inversions imaged the Kobe rupture 
zone as a low velocity zone from the surface to 
a depth of 20 km with a width of 5 to 10 km 
(Figs. 3 and 4) (1 0). On average, V, and V, in 
the fault zone were 3 to 4% lower than the 
surrounding country rock velocities. V, was 
slower in the northeastern segment of the 
aftershock zone (the Suma and Suwayama 
faults) than that in the southwestern segment 
(the Nojima fault on Awaji Island) (Fig. 2A), 
while V, was slower along the Nojima fault 
(Fig. 2B). Therefore the Suma and Suwayama 
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