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Auditory Neurophysiologic Responses and 
Discrimination Deficits in Children with Learning 

Problems 
Nina Kraus,* Therese J. McGee, Thomas D. Carrell, 
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Children with learning problems often cannot discriminate rapid acoustic changes that 
occur in speech. In this study of normal children and children with learning problems, 
impaired behavioral discrimination of a rapid speech change (/da/versus/ga/) was cor- 
related with diminished magnitude of an electrophysiologic measure that is not depen- 
dent on attention or a voluntary response. The ability of children with learning problems 
to discriminate another rapid speech change (/ba/versus/wa/) also was reflected in the 
neurophysiology. These results indicate that some children's discrimination deficits 
originate in the auditory pathway before conscious perception and have implications for 
differential diagnosis and targeted therapeutic strategies for children with learning dis- 
abilities and attention disorders. 

Learning and attention problems occur in 
many children, often concurrently (1 ). 
These disorders frequently involve an in- 
ability to process complex auditory infor- 
mation that occurs. for examnle. in 
speech. In fact, a large subset of Lhilbren 
with such disorders cannot nrocess com- 
plex auditory signals, even at the most 
elemental level 12. 3 ) .  , ,  , 

A comprehensive study is under way to 
examine the relation among psychophysical 
speech discrimination abilities, standardized 
measures of learning and academic achieve- - 
ment, and neurophysiology in a large pop- 
ulation of both normal children and chil- 

N. Kraus, Comrnunlcation Sciences and Disorders 

dren with learning problems. One aim is to 
determine whether children with certain 
auditory processing problems have difficul- 
ties that originate from abnormalities in the 
neurophysiologic encoding of acoustic dif- 
ferences in speech (which occurs after pe- 
ripheral sensory encoding and before con- 
scious perception) or whether the problems 
arise from some higher level processing def- 
icit (which may involve, for example, lin- 
guistic or cognitive abilities) (4). Such in- 
formation would aid in the diagnosis akd 
treatment of these children, whose learning 
problems have been difficult to define or 
categorize. 

An important aspect of this work is to 
establish a neuro~hvsiologic correlate of be- 
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tool for exploring the processing of acoustic 
differences that underlie speech perception. 

The MMN originates in the auditory 
thalamocortical pathway (6, 7) and demon- 
strates learning-associated plasticity (8). It is 
elicited by a physically deviant stimulus oc- 
curring in a series of homogeneous stimuli. 
The response can be elicited in a passive 
paradigm in which attention or behavioral 
responses are not required (9). It has been 
obtained during sleep in infants and adults 
and during wakef~~lness, sleep, and barbitu- 
rate anesthesia in animal models (10). From 
a develo~rnental standnoint, the MMN is 
robust in children and appears to be mature 
by school age (1 1,  12). Thus, the MMN 
reflects with considerable precision the dis- 
crimination of acoustic change and can be 
used to determine which aspects of the 
acoustic signal are differentiated neurophysi- 
ologically and, ultimately, which neuronal 
pathways are impaired (7, 13). 

In this experiment, behavioral discrimi- 
nation abilities and MMN responses were 
evaluated in a group of normal children 
(n = 90) and in a group of children with 
learning problems (n = 91). The normal 
group consisted of children ages 6 to 15 
years with no history of learning or atten- 
tion problems (based on a detailed parent 
auestionnaire) and scores within normal 
limits (including no discrepancy between 
ability and achievement) on a psychoedu- 
cational test battery (14). The group with 
learning problems consisted of children in 
the same age range who had been diagnosed 
clinically as having a learning disability 
(LD children), attention deficit disorder 
(ADD children), or both; in some cases, 
they had scores t6at were not within the 
normal limits on two or more of the tests in 
the psychoeducational test battery and a 
history of learning or attention difficulties 
(suspected LD). All children had normal 
intelligence (scores >85 on the Brief Cog- 
nitive Scale) (14). The normal group dif- 
fered significantly from the group with 
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learning problems on measures of listening 
comprehension, visual speed of processing, 
sound blending, auditory processing, read- 
ing, spelling (P < 0.001 in all cases), and 
auditory memory for words (P < 0.02). 

Using a parameter estimation by se- 
quential tracking (PEST) paradigm (15), 
we obtained just-noticeable differences 
(JNDs) for two rapid spectrotemporal dif- 
ferences with two continua of synthetic 
consonant-vowel svllables. The continua 
varied either in the duration of the for- 
mant transition (/ba/to/wa/) [(bah-wah) 
to (dah-gah)] or in the spectral content of 
the formant ;ransition (/da/to/ga/) (16). 
There was nb correlation between intelli- 
gence and JND scores ( r  = -0.10, P = 

0.165, not significant). To compare dis- 
crimination data for the two acoustic con- 
trasts, we converted the JNDs for all par- 
ticipants to JND' scores to compare results 

2- Ida/-/ga/ 
Continuum 

Fig. 1. Mean JND' scores for normal children 
(WNL) and children with learning problems (LP) for 
the /ba/-/wa/ and /da/-/ga/ continua. LD and 
ADD subgroup data are shown by thin lines (the 
suspected LD subgroup is not shown). 

across test conditions and across groups 
(17). 

Figure 1 shows the mean JND' scores for 
the normal group and the group with learn- 
ing problems for both the /ba/-/wa/ and the 
Ida/-/gal continua. The JND' scores indi- 
cate that the difference between groups was 
much smaller for the /ba/-/wa/ than for the 
Ida/-/gal stimuli. The normal children per- 
formed better than the children with learn- 
ing problems for both stimuli (F = 11.54, 
P < 0.001), and both groups discriminated 
the /ba/-/wa/ contrast better than the 
Ida/-/ga/ contrast (F  = 13.55, P < 0.001). 
In addition, a significant group-by-condi- 
tion interaction indicated a greater differ- 
ence between the normal erouo and the - .  
group with learning problems for Ida/-/gal 
discrimination than for /ba/-/wa/ discrim- 
ination (F  = 10.74, P < 0.002). 

When subgroups of LD and ADD chil- 
dren were compared to the normal children, 
and when LD and ADD children were com- 
pared to each other, a Scheff6 post hoc 
analysis showed similar group-by-condition 
differences (all combinations were signifi- 
cant at the P < 0.01 level except for normal 
children versus ADD children for the /ba/- 
/wa/ contrast) (Fig. 1). Therefore, even 
thoueh discrimination was im~aired for - 
both stimulus contrasts in the children with 
learning problems, the perception of those 
rapid speech contrasts was impaired to a 
different extent. Moreover, individual TND' 
scores suggest that an auditory perception 
deficit affects a large number of LP chil- 
dren. For example, nearly 35% of them had 
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Fig. 2. Grand-average MMN responses elicited by a /da/-/ga/ contrast at 
seven scalp recording locations in (A) "good" /da/-/ga/ perceivers and (B) 
"poor" /da/-/ga/ perceivers. The schematic head indicates electrode po- 
sitions. The top thin line is the response to the /da/ stlmulus when it 
was presented alone. The thick line is the response to the /da/ stimulus 

Ida/-/gal JND' scores greater than 7, where- 
as onlv 10% of the normal children had 
such discrimination scores. 

Electrophysiologic MMN responses were 
elicited by synthetic Ida/-/gal and /ba/-/wa/ 
stimulus  airs from the same continua used 
in the behavioral experiment. The specific 
stimulus pairs were selected to be difficult 
for listeners with normal abilities to dis- 
criminate (18). MMN responses were mea- 
sured with procedures similar to those pre- 
viously described (1 9). 

MMNs were elicited from 42 children 
from the group tested behaviorally, all of 
whom could discriminate the Ibal-Iwal , , ,  , 

contrast well. These children were age- 
matched and grouped according to their 
behavioral perception of Ida/-/gal (20). Fig- 
ure 2 shows robust grand-average MMN 
responses for "good" Ida/-/gal perceivers 
(n = 21) and absent grand-average MMN 
responses for "poor" Ida/-/gal perceivers 
(n = 21) to the Ida/-/gal stimulus contrast. 
The MMN area and duration measures for 
individual children also were significantly 
smaller in the "poor" group than in the 
"good" group (P < 0.003 for both mea- 
sures). There was a correlation between 
/da/-/gal discrimination scores and both 
MMN duration and area (r = -0.40, P < 
0.01 and r = -0.42, P < 0.01, respective- 
ly). These data indicate that good percep- 
tion of /da/versus/ga/ is associated with 
robust MMN responses, and poor discrim- 
ination of /da/versus/ga/ corresponds to 
diminished MMN responses. 

In addition, 14 "good" and 14 "poor" 

Latency (ms) 

when it signaled an acoustic change in the oddball paradigm. The mis- 
match response is seen in the difference wave (lower thin line) as a deflec- 
tion below the zero line. The boxes below indicate the latency ranges 
over which a significant mismatch response occurs (P < 0.01). Scale 
bars = 0.5 KV. 
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Ida/-/gal perceivers from the same pool of 
42 children were tested neurophysiologi- 
cally with the /ba/-/wa/ contrast. Both 
groups had MMN responses to /ba/-/wa/ 
that were consistent with their behavioral 
discrimination abilities. There was no sig- 
nificant difference in MMN duration and 
area between the two groups ( t  = 0.49, P = 
0.63, not significant, and t = 0.71, P = 
0.49, not significant,.respectively) (Fig. 3). 

Taken together, these psychophysical 
and electrophysiologic data indicate that 
the behavioral discrimination exhibited 
by children~with learning problems is mir- 
rored consistently by an electrophysiologic 
measure that originates specifically in the 
auditory pathway and does not depend on 
attention or a voluntary response. The 
results orovide strong evidence that the - 
discrimination difficulties of some chil- 
dren with learning oroblems occur before - .  
conscious perception. Furthermore, the 
behavioral data show that uerce~tion of 

A 

all rapid spectrotemporal changes may not 
be imuaired to the same extent in children 
with learning problems. The processing of 
the two contrasts* studied here may tap 
into separate and 'distinct neural mecha- 
nisms, which is consistent with the view 
that the encoding of acoustic elements of - 
speech occurs at distinct locations along 

Latency (ms) 

Fig. 3. Grand-average MMN responses elicited by a 
/ba/-/wa/ contrast at one scalp recording location 
(frontal center) for (A) 14 "good" Ida/-/gal perceiv- 
ers and (B) 14 "poor" Ida/-/gal perceivers. The mis- 
match response is seen in the difference wave (lower 
thin line) as a deflection below the zero line. The 
boxes below indicate the latency ranges over which 
a significant mismatch response occurs (P < 0.05). 

the auditory pathway (7, 13, 21). 
Electrophysiologic responses might be 

applicable clinically in the differential diag- 
nosis of children with learning problems, to 
separate individuals who have auditory sys- 
tem-based deficits from individuals who 
have deficits originating later in the percep- 
tual process. Because previous research 
shows that speech-sound perception can be 
modified by training (3, 22) and that the 
MMN changes after listening training ( 7 ) ,  
it is important to determine which acoustic 15, 
elements are perceived abnormally by chil- 
dren with learning problems. That informa- 16. 

tion would influence the design of targeted 
intervention strategies and provide a foun- 
dation for the study of neural processes 
underlying perception problems. 
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