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Long nanotubes of fluid-lipid bilayers can be used to create templates for photochemical 
polymerization into solid-phase conduits and networks. Each nanotube is pulled from a 
micropipette-held feeder vesicle by mechanical retraction of the vesicle after molecular 
bonding to a rigid substrate. The caliber of the tube is controlled precisely in a range from 
20 to 200 nanometers merely by setting the suction pressure in the micropipette. 
Branched conduits can be formed by coalescing separate nanotubes drawn serially from 
the feeder vesicle surface. Single nanotubes and nanotube junctions can be linked 
together between bonding sites on a surface to create a functionalized network. After 
assembly, the templates can be stabilized by photoinitiated radical cross-linking of mac- 
romonomers contained in the aqueous solution confined by the lipid bilayer boundary. 

R e c e n t  developments in the fabrication of of nanotube networks and a photochemical 
meso- and nanoscale structures have in- polymerization process for stabilization of 
cluded the self-assembly of carbon and 0th- the resulting patterns in situ. 
er materials into nanotubes and auantum The formation of bilaver nanotubes from 
wires (1 )  and the coalescence of lipid sur- 
factants from solution into submicrometer 
tubules (2).  Because of the bulk nature of 
the processes used to assemble such aggre- 
gates, it is difficult to preset the dimensions 
(such as tube length and the number of 
layers in the tube wall), and'it is even more 
difficult to pattern macroscopic arrange- 
ments of the tube structures. New insights 
into the mechanics of biolnembranes (3) 
led us to develop a simple method for the 
production of near-millimeter lengths of 
nanotubes, with calibers set by manual con- 
trol (to an accuracy of +- 10%) in the range 
of 20 to 200 nm. These tubes can be ioined 
to form branched conduits and complex 
networks. Because these designs are made - 
possible by the fluid property of the bio- 
membrane interface, the challenge has been " 

to develop chemical strategies to stabilize 
the membrane templates after patterning. 
Here, we introduce a method for the layout 
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membrane capsules is a common occur- 
rence in cell biology. For example, when a 
cell or vesicle sticks to a foreign surface at a 
point and is then pulled away, an optically 
invisible bilayer tube (diameter <I00  nm) 
usually connects the capsule to the surface 
even after displacements of many diameters 
(4). Similarly, when vesicles are dehydrated 
to create laree excesses of surface area or - 
when cytoskeletal structures are destroyed 
inside cells, spherical blebs appear and re- 
main tethered to the outer membrane by 
invisible bilaver tubes 15). The freauent ~, 

occurrence of tethers shows that the closed 
spherical topology preferred by larnellar- 
phase lipids is extremely difficult to disrupt. 

Two ~hvsical  conditions are reauired for 
nanotubk formation from bilayer'vesicles: 
1i) the bilaver must be bonded to a s ~ o t  on a rigid surface, and (ii) there mus; be a 
reservoir of excess bilayer surface, beyond 
that sufficient to encliise the vesicle volume 
as a sphere. These two conditions are easily 
attained and manipulated externally. First, 
vesicles after preparation (6) are slightly 
dehydrated by increasing the osmotic 
strength of the aqueous suspension. After 
aspiration into a micropipette, the excess 
surface of the vesicle is drawn into a pro- 
jection inside the pipette (Fig. I A ) ,  which 
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provides the reservoir of bilayer for nano- 
tube production. If a few specialized lipids 
are mixed into the bilayer during prepara- 
tion, strong point attachments are made 
when the vesicle is touched to a surface 
decorated with adhesive ligands (7) specific 
to rhe head groups of these lipids. When the 
pipette holding the vesicle is withdrawn, a 
nanotube is formed (Fig. 1, A and B). Both 
bright-field and fluorescence optical images 
show the feeder vesicle connected by the 
invisible nanotube to an immobilized mi- 
crosphere coated with adhesive ligands. 
The nanotube is exposed by excitation of 
fluorescently labeled lipids doped in the 
bilayer surface. [The tube appears thick 
(-0.5 pm) in the fluorescence image be- 
cause of optical diffraction. The actual di- 

mension is an order of magnitude smaller 
(-40 nm).] Throughout the process, pi- 
pette suction P sets the level of tension T, 
in the vesicle bilayer, that is, 

where R, and R are the radii of the pipette 
lumen and the spherical body of the vesicle, 
respectively. In turn, the tension controls 
the nanotube diameter (2r,), as established 
by a mechanical force balance (3), that is 

where kc is the bending stiffness of the 
bilayer (-10-l9 N-m). Because of mass 

exterior solution allows the bilayer (-3 nm thick) vesicle to be 
observed clearly with Hoffman modulation contrast optics. (6) Epiillumination is used to excite fluores- 
cence from labeled lipids doped in the bilayer, revealing the bilayer tube (diameter 40 nm) emanating 
from the vesicle. The vesicle was withdrawn from adhesive contact with the microsphere to produce the 
50-bm-long tube. The cross section of the bilayer tube (which remains continuous with the vesicle 
surface) is an order of magnitude smaller than the apparent diffraction-limited thickness seen in the 
fluorescence image. Scale bars. 10 pm. 

Fig. 2. Control of nanotube diame- 
ter by pipette suction applied to a 
bilayer vesicle made from pure 
stearoyl-oleoyl phosphatidylcho- 3 
line. (A) Plots of vesicle projection 
length L, inside the pipette versus 7 
nanotube length L, as the vesicle 
was retracted from the adhesive 4 (run) I n ,  (rn mN-3 
surface at two levels of bilayer ten- 
sion (set by pipette suction pressure). The slope of each plot yields the mean nanotube radius r,. (B) 
Values of the square of the nanotube radius are plotted as a function of bilayer tension. The proportion- 
ality between the square of the tube radius and the reciprocal tension is one-half the bending or 
curvature elastic modulus of the bilayer, which yields kc = 10-l9 J. 

pulled away and the bi- 
layer tubes slide over the fluid surface to coalesce at a perfect triangular junction, which implies that all 
three segments have the same bilayer tension and cross-sectional dimension. The procedure can be 
repeated to create an array of nanotube junctions. Scale bars, 10 Fm. 

conservation, the rate of decrease in the 
projection length L, inside the pipette as 
the nanotube length L, is increased provides 
a macroscopic measurement of the invisible 
nanotube diameter, that is, the radius 

(3 ,4) .  Nanotube diameter is controlled by 
bilayer tension (Fig. 2). This response is 
independent of the rate of tube extraction, 
which verifies that the mechanical force 
balance is dominated by the elastic prop- 
erties of the bilayer (3). Finally, because 
the lipids are selected to form a fluid 
surface, two or more nanotubes drawn 
from the same feeder vesicle coalesce to a 
single iunction when the vesicle is pulled - .  
away from the attachment sites. Fluores- 
cence microscope images of the produc- 
tion process for a Y-branched nanotube 
element are shown in Fig. 3, A and B. 
Serial repetition of these procedures be- 
tween points in an array of sites can create 
a com~lex  network of nanotubes and 
branched elements. 

Photoinitiated radical cross-linking of 
polyethylene glycol 1000 dimethacrylate 
(PEGDMA) was chosen as a prototype 
chemistry for stabilization of lipid bilayer 
templates. Cross-linked multimethacrylates 
form elastic networks that are widelv used 
in applications where strength and shape 
stability are required (8). Of particular ben- 
efit, PEGDMA is soluble and swellable in 
both water and inorganic solvents, but after 
cross-linking the polymerized material 
forms a resilient and insoluble polyethylene 
glycol (PEG) gel. The PEG structure is 
attractive in the present context for several 
reasons: (i) The capability of swelling in 
aqueous and organic environments makes 
possible postpolymerization processing of 
patterns and networks in polar and nonpo- 
lar solvents. (ii) The PEG material does not 
denature enzymes or other proteins of po- 
tential interest in biosensor or biomaterials 
technolow [PEG-modified enzvmes are 

- 8  - 
now being used in clinical applications (9 ) ] .  
(iii) ~ikewise, PEG surfaces are relatively 
inert with respect to biological cells, which 
suggests that cell viability and function 
should not be altered in cellular devices 
that are composed of patterned PEGDMA 
networks. In our process, PEGDMA is 
present in the aqueous solution confined by 
the lipid bilayer and is cross-linked through 
radicals generated by dye-sensitized pho- 
tooxidation of triethanolamine (10). Rose 
bengal is included as a photosensitizer for 
excitation by the 514-nm line of an argon 
ion laser ( 1 1 ). . , 

Stable casts of lipid bilayer templates are 
shown in Fig. 4. The images show a variety 
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Fig. 4. Bright-field video 
images of rigid casts of 
vesicle and tube shapes 
after photopolymeriza- 
tion and detergent re- 
moval of the lipid bilayer 
template. The template 
was removed by addi- 
tion of a quantity of sodi- 
um dodecyl sulfate suffi- . 
cient to rupture bilayer 
vesicles that were not 
subjected to photopoly- 
merization. (A) The 
cross-linked PEGDMA F 
replica of a bilayer vesi- ~ 
cle (diameter -20 km) , 
aspirated initially into a 
micropipette. (6) The 
cross-linked PEGDMA 1- - c  core of a large bilayer D 
tube (diameter -0.5 to 
1 .O pm) connected to the polymerized feeder vesicle. (C) A small-bore pipette pulls on the polymerized 
cylinder to demonstrate its mechanical strength. (D) After release, the tube relaxes and coils loosely like 
a flexible "rope." Scale bars, 10 pm. 

of ~nicroscopic shapes after photopolymer- 
ization and removal of the livid bilaver 
template by a detergent solutin. In Fig. 
4A, a vesicle (diameter -20 p m )  was 
cross-linked into a rigid replica of its 
smooth shape while held by micropipette 
suction. T h e  images in Fig. 4, B to D, show 
a large tube (diameter -0.5 to 1.0 p m )  
attached to the feeder vesicle after the 
cross-linking of the core and the removal 
of the bilayer. We found that  the long 
cylinder could be repeatedly stressed by 
pulling on  it with a small-bore micropi- 
pette (Fig. 4C) .  After each release, the 
cylinder merely relaxed into a loosely 
coiled "rope-like" shape (Fig. 4D). These 
results demonstrated the rigidity and flex- 
ibility of the cross-linked -polymer struc- 
ture. By comparison, fluid bilayer tubes are 
simply drawn back into the vesicle body 
by membrane tension unless restrained by 
a pulling force (Fig. 1B). 

T h e  techniques described above pro- 
vide a bas~s for the fabrication of function- 
al nanoscale conduit patterns and net- 
works of various kinds. Lipid tubules can 
be used as precursors for the formation of 
submicrometer silica tubes (12) and as 
templates for the deposition of metals (2)  
and metal oxides (13); the methods devel- 
oped in these earlier approaches should be 

impregnation of the core with metal salts 
can be used to metallize the structure after 
reduction. A similar approach for the dep- 
osition of metals in  carbon nanotubes has 
been demonstrated (14). Moreover, the  
cross-linked core of nanotubes can also 
serve to  immobilize enzymes or other pro- 
teins that are capable of modulating elec- 
tron transfer or biochemical recognition 
processes. Finally, nanotube arrays can be 
used to extend recent advances in biosur- 
face design (15) by linking patterns of 
biological cells immobilized o n  substrates 
t o  create integrated "cellular" biosensors 
and devices. 
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