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Immunostimulatory DNA Sequences Necessary
for Effective Intradermal Gene Immunization
Yukio Sato, Mark Roman, Helen Tighe, Delphine Lee,

Maripat Corr, Minh-Duc Nguyen, Gregg J. Silverman,
Martin Lotz, Dennis A. Carson, Eyal Raz*

Vaccination with naked DNA elicits cellular and humoral immune responses that have a
T helper cell type 1 bias. However, plasmid vectors expressing large amounts of gene
product do not necessarily induce immune responses to the encoded antigens. Instead,
the immunogenicity of plasmid DNA (pDNA) requires short immunostimulatory DNA
sequences (ISS) that contain a CpG dinucleotide in a particular base context. Human
monocytes transfected with pDNA or double-stranded oligonucleotides containing the
ISS, but not those transfected with ISS-deficient pDNA or oligonucleotides, transcribed
large amounts of interferon-«, interferon-B, and interleukin-12. Although ISS are nec-
essary for gene vaccination, they down-regulate gene expression and thus may interfere
with gene replacement therapy by inducing proinflammatory cytokines.

Intramuscular (1) or intradermal (2) ad-
ministration of pDNA expression vectors
causes intracellular synthesis of the encoded
proteins and induction of long-lasting cel-
lular and humoral immune responses. Re-
cently, we reported that mice injected or
scratched intradermally with expression
vectors encoding B-galactosidase (B-Gal)
and containing a bacterial ampicillin resis-
tance gene (ampR) produced a strong anti-
body response to B-Gal (3). However, sub-
sequent experiments showed that mice in-
jected intradermally with a similar expres-
sion vector containing the kanamycin
resistance gene (kanR) instead of ampR gen-
erated a weak antibody response to B-Gal
(Fig. 1 and Table 1). These results were
unexpected, because we had always detect-
ed higher B-Gal activity in cells transfected
with the kanR-based vector (pKCB) that
encodes B-Gal, pKCB-Z (615.4 pg of B-Gal
per well), than in cells transfected with the
ampR-based vectors, pACB-Z and pACS-Z,
encoding B-Gal (254.9 pg of B-Gal per well
and 113.3 pg per well, respectively) (4).
To test the hypothesis that the ampR
sequence may up-regulate the immune re-
sponse to B-Gal in gene-vaccinated mice,
we injected animals with pKCB-Z together
with pDNA for either the ampR or kanR
gene. The coadministration of pKCB-Z with
vectors containing the ampR gene (pACB or
pUC19) restored the antibody response to
B-Gal to approximately the level induced by
pACB-Z (Table 1). The immune stimula-
tion was dose-related because coadministra-
tion of 100 pg of pUC19 induced a larger
specific antibody response than coadminis-
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tration of 5 pg of pUC19. In contrast, co-
administration of pKCB-Z with the pKCB
vector did not result in any significant en-
hancement of the antibody response to
B-Gal (Table 1). The intradermal gene vac-
cination of mice with pKCB-Z did not in-
duce a significant cytolytic T lymphocyte
(CTL) response to 3-Gal, as compared with
the vigorous CTL response induced by
pACB-Z (Fig. 2A). However, the coinjec-
tion of pKCB-Z with pACB or with pUC19
restored the CTL response to B-Gal to ap-
proximately the level observed in mice im-
munized with pACB-Z (Fig. 2A).

One of the main features of intradermal
gene vaccination with naked pDNA is the
induction of a T helper cell type 1 (Ty1)
response to the gene product (3, 5). This
response is characterized by the production
of a distinctive cytokine profile [interleu-
kin-2 (IL-2), tumor necrosis factor—@3
(TNF-B), and, mainly, interferon-y (IFN-
v)] by antigen-stimulated CD4 T cells (6).
The CD4 splenocytes from pACB-Z-immu-
nized mice generated large amounts of
IFN-v and small amounts of IL-4 (Fig. 2, C
and D, respectively), whereas cells from
pKCB-Z-immunized mice produced only
trace amounts of these cytokines. However,
the production of IFN-y could be restored
in pKCB-Z-immunized mice by coinjection
with the ampR-containing vectors, pACB
and pUC19 (Fig. 2C). B

Palindromic, single-stranded immuno-
stimulatory DNA  sequences (ISS) have
been reported to induce production of IFN-
a, IFN-B, and IFN-y from mouse spleno-
cytes and human peripheral lymphocytes
and to enhance natural killer cell activity.
These ISS include the following CpG-con-
taining hexamers: 5'-GACGTC-3’, 5'-AG-
CGCT-3’, and 5'-AACGTT-3' (7). Two
repeats of 5'-AACGTT-3' were in the ampR



gene, whereas no ISS were identified within
the kanR gene (Fig. 1). To test the hypoth-
esis that the 5'-AACGTT-3’ ISS within the
ampR gene facilitates the induction of CTL
and Tyl immune responses to B-Gal, we
subcloned either one or two repeats of the

ISS 5'-AACGTT-3' to sites flanking the

kanR gene in the pKCB-Z vector. The new
vectors were designated pKISS-1-CB-Z
and pKISS-2-CB-Z, respectively (Fig. 1).
Gene vaccination with the modified
pKISS vectors elicited strong humoral and
cellular immune responses to B-Gal (Ta-
ble 1 and Fig. 2). Notably, intradermal

Fig. 1. Localization of the 00 D ° 0 Eci) RI s \?
ISS on the pDNAs used . | '
in this Stud)l:?. The kanR pACS z CMV promoter lacZ SV40pA ampR
gene does not contain R 0 0 ° Eco Rl 00
gr?y SOIf Atgeogé?'AgGTCé pACB-Z CMV promoter lacZ BGHpA ampR

, O -o, an
5'-AACGTT-3'  palin- [inn] 0 Q c]:j’R' Eco Rl
dr%m.c )\Scsé (7). TTe PACS ~ PKCBZ T promor P T P
and p vectors are
pUC19-based plasmids - [T b ? ? 9 Foofl
(With ampR) that contain p e CMV promoter lacZ BGHpA kanR
the cytomegalovirus
(CMV)  promoter-en- KISS.2-CB.7 e T T 9 ¢
hancer sequences [807 — PRoSrE B4 BEA oomoter lacZ BGHpA o]
base pairs (bp)] along e e o GACGTC
with the CMV immediate ~ PUC19 — po 1kb o AGCGCT
early intron (824 bp) (2). fragment ® AACGTT

The pACS plasmid con-

tains a 938-bp SV40 polyadenylate [poly(A)] (SV40pA) signal, whereas in the pACB plasmid, a 560-bp
bovine growth hormone poly(A) signal (BGHpPA) replaces the SV40pA signal (Bgl II-Eco RI). The pKCB
vector was constructed by replacing the 1542-bp ampR gene (Bsp HI-Hind lll) with a 1042-bp kanR-
containing fragment (Bsp HI—Hind Ill). The lacZ expression vectors (pACB-Z and pKCB-Z ) were construct-
ed by inserting a 3283-bp Escherichia coli lacZ-containing fragment into the Pst I-Bam HI sites of the
aforementioned corresponding vectors. The putative immunostimulatory double-stranded oligonucle-
otide (sense, 5'-AATTGAACGT TCGC-3'; antisense, 5'-AAT TGCGAACGTTC-3') flanked by Eco RI-
compatible overhangs was ligated into a unique Eco Rl site of pACB, 3’ to the BGHpA sequence. This
resulted in the disruption of the Eco Rl site and the creation of a new Psp1406l restriction site (AACGTT).
The ISS-containing region was then subcloned (Bsp HI-Bam HI) into the pKCB and pKCB-Z vectors to
create pKISS-1-CB and pKISS-1-CB-Z, respectively. The vectors pKISS-2-CB and pKISS-2-CB-Z were
constructed by ligation of the same ISS oligonucleotide into pKISS-1-CB and pKISS-1-CB-Z at a different
Eco Rl site 5' to the CMV promoter (disrupting this Eco Rl site).

Fig. 2. Cellular immune responses to B-Gal in
BALB/c mice immunized with various pDNAs (22).
CTL and cytokine secretion assays were per-
formed 12 weeks after initial immunization (24). (A)
Restoration of the CTL response to B-Gal in mice
by coinjection of ampR-based vectors (50 g per
injection for pKCB-Z, 100 pg for pKCB and
PACB, and 5 pg for pUC19) or by injection of the
modified pKCB vectors, pKISS-1-CB or pKISS-2-
CB (50 g per injection). The specific lysis of P815
target cells incubated briefly with B-Gal peptide
was less than 10% in naive, unimmunized mice
and pUC19-immunized mice. (B) The specific ly-
sis of P815 target cells incubated briefly with the
influenza nucleoprotein peptide (2, 24) as an irrel-
evant peptide was less than 14% when the effec-
tor-to-target (E/T) ratio in all groups was 36:1.
Secretion of IFN-v (C) and IL-4 (D) by 8-Gal-stim-
ulated CD4* splenocytes. Coinjection of ampR-
based vectors or injection of one of the modified
pKCB vectors, pKISS-1-CB or pKISS-2-CB, en-
hanced IFN-y production. CD4* splenocytes
from gene-vaccinated mice secreted large
amounts of IFN-y and very small amounts of IL-4
compared with the CD4* splenocytes from mice
vaccinated with B-Gal protein (Calbiochem, La
Jolla, California) in alum, indicating a T1 re-
sponse to B-Gal for the gene-vaccinated mice (3).
Results are the mean + SE of four mice per group.

100 A 100
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o °
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injection of the pKISS-2-CB-Z induced a
stronger antibody response to B-Gal than
did the pKISS-1-CB-Z.

The immunostimulatory effect of bacte-
rial DNA was discovered by Tokunaga et al.
(8). By synthesizing single-stranded oligo-
nucleotides, corresponding to different re-
gions in the Mycobacterium bovis genome,
researchers identified specific single-strand-

Table 1. Immunoglobulin G (IgG) to B-Gal in
BALB/c mice co-immunized with various pDNAs
(22). The antibody responses to B-Gal 8 weeks
after immunization are shown (23). Intradermal
injection of pKCB-Z and pUC19 into two sepa-
rate sites (base of the tail and the nape, respec-
tively) did not restore the immune response to
B-Gal. Unless otherwise indicated, mice were
immunized with 50 g of pDNA. Results are the
mean *+ SE of eight mice for pKCB-Z and four
mice for the other groups. In two other experi-
ments, intradermal immunization of mice with
pACS-Z or pACB-Z (eight mice per pDNA per
experiment) resulted in similar responses.

Plasmid DNA 'QG(EJ%EI')GS"
PKCB-Z 2018 + 966*
DACS-Z 6391 + 1401
PACB-Z 18052 + 4842
PKCB-Z + pKCB (100 pg) 640 = 260"
PKCB-Z + pACB (100 ng) 11248 = 879
PKCB-Z + pUC19 (5 pg) 9505 + 2502

pKCB-Z + pUC19 (100 1)
PKISS-1-CB-Z 34233 + 5452
PKISS-2-CB-Z 47413 + 11182

*Denotes P < 0.05 in comparison with the other groups
by analysis of variance.

59417 *= 17309

—e— pKCB-Z
—o— pACB-Z
—e— pKCB-Z + pACB
—0— pKCB-Z + pUC19
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ed oligonucleotides that activated adherent
splenocytes and enhanced natural killer cell
activity in vitro (9). Recently, Krieg et al.
studied the effects of single-stranded oligo-
nucleotides with CpG motifs on murine B
lymphocyte activation (10). They found
that cytosine methylation or the elimina-
tion of the CpG from the oligonucleotide
abolished the lymphocyte stimulatory ef-
fect. The activation capability was attribut-
ed to a series of CpG-containing motifs that
generally follow the formula 5'-Pur Pur CG
Pyr Pyr-3'. CpG-enriched oligonucleotides
induced not only B cell proliferation, but
also the secretion of IL-6 and IFN-y (11).

To analyze the cytokine profile induced
by the kanR- and by the ampR-based vec-
tors, we transfected in vitro fresh human
monocytes with a panel of pDNAs, ISS
oligonucleotide, and ISS-deficient oligo-
nucleotide (12, 13) and then assessed by
reverse transcription—polymerase chain re-
action (RT-PCR) the expression of the
Ty l-associated cytokine mRNAs of IEN-
o, IFN-B, and the p40 subunit of IL-12.
Transfection with pUC19, pACB, pKISS-
1-CB, and double-stranded ISS digonucle-
otide, but not with pKCB or ISS-deficient
oligonucleotide, enhanced within 3 hours
mRNA amounts for all three cytokines
(12, 13). IFN-«a plays a role in the differ-
entiation of naive T cells toward a Tl
phenotype, antagonizes T(;2 cells (14), in-
hibits IgE synthesis, promotes IgG2a pro-
duction (15, 16), and induces a T};1 phe-
notype of allergen-specific T cell clones
(17). IL-12 promotes IFN-y production by
T cells (18) and favors maturation of Ty;1
cells (19). Recently, Halpern et al. showed
that the stimulation of [FN-vy synthesis by
bacterial DNA is mediated by IL-12 and
TNF-a (20). Therefore, keratinocytes and
dermal antigen-presenting cells (APCs)
transfected with [SS-containing pDNA
could produce IFN-a and IL-12, which
would then induce a T};1 immune response
against the pPDNA-encoded protein.

Our findings indicate that immunogenic
pDNA may be divided conceptually into
two distinct units: a transcription unit that
directs antigen synthesis and an adjuvant
unit in the plasmid backbone that elicits
the production of type-1 IFN and 1L-12 in
the transfected skin keratinocytes and
APCs. For this reason, manipulation of the
transcription unit within the pDNA to
yield higher levels of antigen expression
does not necessarily produce a stronger im-
mune response. Both the localization and
the precise sequence of the ISS within the
plasmid backbone are also important for
DNA vaccination. Thus, the potential ISS,
5'-GACGTC-3', and 5'-AGCGCT-3' in
the pKCB-Z transcription unit did not have
sufficient adjuvant activity in vivo (Fig. 1).
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In contrast, the addition of one or two
repeats of the 5'-AACGTT-3’ sequence to
the noncoding region of the pKCB-Z back-
bone enhanced the immune response to
B-Gal in a “gene dosage’-related fashion
(compare pKISS-1-CB-Z with pKISS-2-
CB-Z in Table 1).

Although ISS enhance CTL and Tyl
immune responses after intradermal gene
vaccination, they may interfere with gene
expression by stimulating IFN-a produc-
tion. Indeed, pKISS-1-CB-Z, pKISS-2-CB-
Z, and ampR-based vectors always expressed
smaller amounts of B-Gal in the transfected
cells than did pKCB-Z, and the addition of
neutralizing antibodies to IFN-a doubled
B-Gal expression in the pACB-Z-trans-
fected MG-63 cell line, whereas the addi-
tion of IFN-a (50 pg/ml) diminished B-Gal
expression in pKCB-Z-transfected cells by
40% (12). Thus, the presence of ISS may
interfere with gene replacement therapy by
inducing the synthesis of [FN-a and proin-
flammatory cytokines. The IFN-«a produced
by transfected somatic or stem cells may
directly impede mRNA and protein synthe-
sis (21). ISS-containing plasmids trans-
fected into bone marrow stem cells may
activate adjacent macrophages and T lym-
phocytes, with resultant impairment of stem
cell reconstitution in vivo. A DNA adju-
vant effect is desirable for gene immuniza-
tion, but unnecessary and perhaps harmful
for gene replacement. Vectors for somatic
or stem cell gene replacement therapy
should be designed to lack these ISS,
whereas pPDNA for gene vaccination should
be engineered to have multiple repeats of

the ISS.
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