
dent of pH,  adsorption above the  CMC is in 
the  higher density form of cylinders. T h e  
curvature of the  interfacial aggregate thus 
appears to  be a compro~nise between the  
free curvature defined by intermolecular in- 
teractions and constraints imposed by mol- 
ecule-surface interactions. 

Further study of interfacial surfactant ag- 
gregation may lead not only to  a n  enhanced 
understanding of self-assembly but also to 
applications in materials science. Interfacial 
aggregates could, for example, serve as a 
basis for surface patterning o n  the  nano-
meter scale, complementing recent pattern- 
ing strategies o n  the  si~bmicrometer scale 
(29).  "Fixing" the  liquid-crystalline aggre- 
gates could be accomplished by ultraviolet 
polymerization of modified tailgroups, elec- 
troless metal deposition (30) ,  or polymer- 
ization of certain inorganic counterions 
(31) such as silicates. 
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Scaling Properties of Stretching Ridges 
in a Crumpled Elastic Sheet 

Alex Lobkovsky, Sharon Gentges, Hao Li,* David Morse, 
T. A. Wittent 

Strong deformation of a sheet of solid material often leads to a crumpled state having 
sharp points of high curvature. A scaling property governing the crumpled state has been 
numerically demonstrated by an examination of the ridges joining pairs of sharp points 
in a range of simple geometries of variable size. As the linear size X increases sufficiently, 
the deformation energy grows as X and consists of similar amounts of bending and 
stretching energy. The deformation energy becomes concentrated in a fraction of the 
sheet that decreases as X - ' / 3 .  Despite this concentration, the local strain in the ridge 
decreases as X-2 /3 .  Nearly all the deformation energy in thin, crumpled elastic sheets was 
found to be concentrated in ridges that obey these scaling laws. 

Buckled sheets such as a crumpled piece of 
paper, a collapsed storage tank, or a shriveled 
raisin represent a ubiquitous form of material 
deformation. These objects may be considered 
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as thin, elastic sheets that have been strongly 
deformed by some external force. Such "post- 
buckling" phenomena have been extensively 
studied in lnacroscopic sheets because of their 
importance for structural failure ( 1 ,  2) and for 
cushioning of mechanical impact (3, 4).  Two 
features emerge from these studies. First, the 
deformation appears to be concentrated 
around points and lines that proliferate with 
increasing compression, as illustrated in Fig. 1. 
Second, the compressive force increases 
smoothly over a broad range of compression 
factors (3 ,  5).These same features are expect- 
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ed for microscopic elastic membranes, such as 
layered compounds (6) (Fig. 1C) and solidlike 
surfactant vesicles (7). 

Current understanding of the strongly 
buckled state remains primitive. Some scal- 
ing properties of this state have been ex- 
plored empirically (8-10). Still, it is not 
even known how the energy of a crumpled 
sheet ought to scale with compression. 
With such scaling laws one could predict, 
for instance, the energy of a large crumpled 
sheet given that of a smaller one. Mathe- 
matical treatment of strong buckling has 
been confined to isolated cases (1 1-13) in 
which the buckling behavior is different 
from that of a crumpled sheet. The bulk of 
analytical work concerns sheets weakly de- 
formed by thermal fluctuations (14, 15) or 
by incipient buckling (16, 17). Here, we 
demonstrate a structural element responsi- 
ble for the deformation energy of strongly 
buckled thin sheets: the stretching ridge. 

To define this strong buckling, we con- 
sider a thin, flat elastic disk confined in an 
impenetrable sphere. The thickness h of the 
disk is taken to be much smaller than its 
radius Ro so as to accentuate the contrast 
with an ordinaw three-dimensional solid. 
The confining sphere is gradually contract- 
ed to a radius R < Ro, so that the elastic 
sheet within it must deform. A point orig- 
inally at spatial position s a (s,, s2, 0) moves 
to the point r(s). The deformation energy is 
the sum of the strain energy S and bending 
enerev B. The sheet takes on a conforma- 

- 3  

tion r(s) that minimizes the energy S + B. 
We expect the confined sheet to bend in 

preference to stretching when R >> h. Ac- 
cordingly, we first consider an unstretchable 
sheet. Every point on such a sheet must have 
vanishing curvature in some direction (18). 
If the confining sphere is contracted to two- 
thirds of the radius Ro, for example, the sheet 
can distort into a conical shape (Fig. 2A) 
with a singular curvature at the vertex. At 
each point of the cone there is no curvature 
in the direction toward the vertex. The ra- 
dius of curvature 1/C grows linearly with 
distance from the vertex. The resulting en- 
ergy B = K JR0d2sC2 grows logarithmically 
with the size Ro. Here K is the cylindrical 
bending modulus, d2s denotes the surface 
integration element, and the integration is 
taken over the surface (16). As the confin- 
ing sphere is contracted further, a single 
cone can no longer fit inside it. An increas- 
ing number of singular vertices is necessary; 
hence, we investigated the shape of a surface 
with two such vertices (Fig. 2B). 

The addition of a second vertex alters the 
curvature qualitatively. A generic point P 
must now have zero curvature in the direc-' 
tion of both the first vertex and the second. 
Thus, the surface must be flat except along 
the line joining the vertices. This line must 
form a sharp ridge, whose energy is propor- 

Fig. 1. Examples of buckled and crumpled sheets. (A) Simulated buckled thin cylinder [courtesy of the 
authors of (27)l. (B) A piece of paper lightly crumpled between the hands. (C) Rag phase of molybdenum 
disulfide [courtesy of the authors of (28)l. The calibration bar is 20 nm. 

Fig. 2. Deformations of a 
thin elastic sheet with in- 
creasing confinement. 
(A) Cone shape resulting 
from moderate confine- 
ment. (B) Double-cone 
shape resulting from fur- 
ther confinement. A ge- 
neric point Pis indicated. 
(C) Kite shape which ex- ..:?.., 
hibits a ridge [such as :.. , 

the one in (B)] being bent 
through (D) Approximate a dihedral shape angle. cA 
of the transverse diago- 
nal in (C). Axes for the 
normal coordinate 5 and 
the transverse coordi- 
nate 5 are shown. De- 
flection 5, from the unstretchable ridge and dihedral angle a are indicated. 

Fig. 3. Sample shapes simulated A 
wlth a triangular lattice of springs of 
unstretched length a and spring 
constant K. Shading is proportional 
to the local stretching energy. Bend- 
ing rigidity is imparted by an addi- 
tional energy J(l - f i r  . ir,) for each 
pair of adjacent triangles (i, 1) with 
unit normals f i, and fi, (13), where J is 
proportional to the bending modu- 
lus. This lattice is equivalent to a 
sheet of isotropic elastic material of 
thickness h = 2 f i  m~ and \ 
bending modulus K = ~ a / 2 .  (A) 
Regular tetrahedron. The dlstance 
X between vertices is 100 times the 
lattlce spacing a. Elastic thickness h 
= a/27.4. (B) Kite shape made from 
a flat, rhombus-shaped surface by 
exerting normal forces on the pe- 
rimeter sites. The forces constrain 
the perimeter to follow a rectilinear 
frame with a dihedral angle a equal 
to that of the tetrahedron, namely 
cos-'(1/3). Ridge length X = lO@a 
and thickness h = a/13.7. (C) Two- 
vertex bag shape withX = 50a, h = a/27.4, and length of 2X. The "sharpness" of the vertices (integrated 
Gausslan curvature or discllnation charge) is T ,  as In a regular tetrahedron. (D) Two-vertex boat shape 
with X = 67.48a and h = a/20.4. The two vertlces have sharpness d 3 .  
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tional to its length. The energy increases 
with the svstem size R, aualitativelv more " .  
rapidly with two vertices than with 'one. If 
the surface is allowed to stretch, the effect on 
the single cone is minor: the singularity at 
the vertex spreads over a finite region whose 
size is independent of Rc. In the case of two 
vertices [discussed elsewhere (19)], it has 
been argued that stretching allows the ridge 
to soften to a radius of curvature 1/C of order 
hl/' Roll3. The associated energy was argued 
to grow as Roll3. For very thin sheets, such an 
energy would be qualitatively larger than the 
single-vertex energy, yet qualitatively small- 
er than the energy of an unstretchable sheet. 

We may extend the energy-balance rea- 
soning (19) to treat the ridge joining two 
vertices, as in the double-cone shape of Fig. 
2B. We consider an initial state in which the 
stretching moduli G are very large and the 
ridge is a sharp crease of length X, bent 
through a dihedral angle a ,  like the kite shape 
of Fig. 2C (20). The moduli G are gradually 
decreased so that stretching is allowed and the 
transverse curvature at the ridge relaxes, as- 
suming a value Cc at mid-ridge. We suppose, 

Fig. 4. (A) Mid-ridge curvatures for simulated sur- 
faces relative to the curvature of a single cone at 
the same distance from its vertex. The horizontal 
axis is the anticipated scaling variable (X/h)l13. 
Open squares, kite shapes; open circles, boat 
shapes; closed triangles, bags of length X; closed 
diamonds, bags of length 2X;  black plusses, tet- 
rahedrons with ridge length X = 50a; gray x's, 
tetrahedrons with ridge length X = 100a. Straight 
lines indicate the anticipated scaling behavior. 
(B) Mean squared local curvature C scaled by 
X-2(X/h)2'3 along the perpendicular bisector of 
the ridge. The distance y from the ridge is scaled 
by X(X/h)-'I3 for tetrahedron ridges with different 
X/h as indicated. The strain profile YO/) is similar. 

and later justify, that the bulk of the deforma- 
tion occurs in a strip along the ridge of width 
w = l/CO. Then, as Co decreases, the strip 
must deflect away from the original ridge line 
by an amount to of order l/Co (If the trans- 
verse lines were simply rounded at the apex as 
shown in Fig. 2D, then = {[sin(a/2)]-' - 
l}/Co.) The deflection of the strip results in 
stretching along the ridge: the sheet must be 
strained by an amount y = ({o/X)2 = 
(XCo)-2. The energy S = G $ d2syZ for this 
stretching of the strip is of order Gy2Xw = 
GX-3Cc-5. The energy B to bend the strip is 
of order KC~ZXW -- KXC~.  TO minimize the 
sum of these two energies requires Co = (11 
X) [X/(K/G)'/~]"~. For sheets made of isotro- 
pic material, the length (K/G)' /~ is approxi- 
mately equal to the thickness h (16). The 
optimal energy achieved is of order S = B = 
~(Xlh)'/'. . . .  

To reduce the ridge energy further would 
require deformation in other regions, but 
the cost of such deformations would out- 
weigh their benefit. Thus, to reduce the 
distance X between the vertices substantial- 
ly would require a strain of order y over 
much of the surface-a region much larger 
than the ridge. The energy cost would clear- 
ly be larger than the ridge energy. Likewise, 
if the flanks of the ridge stretched so as to 
reduce the needed deflection of the ridge 
line, the required strain would be of order y 
over much of the surface, and the cost 
would again be prohibitive. 

To test these scaling predictions, we mod- 
eled the elastic sheet numericallv as a trian- 
gular lattice of springs, following, for exam- 
ple, Seung and Nelson ( 13, 21, 22). Some 
minimum-energy surfaces having a variety of 
secondary structures near each ridge are 
shown in Fig. 3. The stretching energy oscil- 

5 0 ~  I I I I 
5 10 15 20 25 

(xlh)'" 

Fig. 5. Total energy E = S + B in units of bending 
modulus K for lattice tetrahedra with X = 50 lattice 
units (squares) or 100 lattice units (triangles), ver- 
sus (X/h)lB. The dashed lines indicate the least 
square fits through the upper seven points of the 
data. The solid lines indicate the continuum ener- 
gies of four separated cones with sharpness 7~ as 
in a tetrahedron and with length X, determined 
from Eq. 1 without the additive constant: lower 
line, X = 50 lattice units; upper line, X = 100 lattice 
units (numerically determined cone energies fall 
close to these lines). 

lates as one moves away from the ridge line 
of the tetrahedron rather than going mono- 
tonically to zero. For the shapes with a free 
edge (Fig. 3, C and D), there are regions of 
large curvature at the free edge opposite to 
the vertices. Faint induced ridges appear be- 
tween the vertices and the induced "verti- 
ces" at the edges. These induced features 
become stronger as the effective size X/h 
increases. 

We dotted the transverse curvature at 
mid-ridg'e versus the reduced size X/h for the 
four different shapes (Fig. 4). The curvature is 
expressed relative to the curvature at the same 
point if only one vertex were present. We 
note first that the curvatures follow the antic- 
ipated (X/h)'I3 scaling. The tetrahedron has a 
reduced curvature of 0.22(Xlh)'/3. as deter- 
mined from fitting all the'data. The uncer- 
tainty in this coefficient derived from the 
scatter of the data is less than 0.001. Second, 
the curves for different shapes have similar 
slopes. This indicates that the shape of the 
ridge does not depend strongly on the sharp- 
ness of the vertices or on the shape of the 
surface far from the ridge. Third, the dihedral 
angle a affects the slope more than the sharp- 
ness of the vertices does. For the bag shapes 
(Fig. 3C) with fixed sharpness, the slope in- 
creases with the bag length (that is, with 
decreasing a ) ,  but for different shapes with 
equal dihedral angles (Fig. 3, A and B), there 
is no discemable difference in slope. Fourth, 
in all cases, the ridge begins to dominate the 
curvature (doubling the reduced curvature) 
for Xlh in the ranee of 350 to 1000. 

w e  analyzed -the tetrahedral shape in 
greater detail. We first verified that the 
shapes were independent of lattice size for 
fixed X/h. The curvature at mid-ridge differs 
from the extrapolation to an infinitely fine 
lattice by no more than 2%. The entire 
profile shrinks inward with increasing X/h; 
the shrinkage is consistent with the antici- 
pated (X/h)-'I3 scaling. This can be seen by 
plotting the mean squared curvature across 
the ridge as shown in Fig. 4B for four dif- 
ferent values of X/h. The ridge profiles col- 
lapse onto a single scaling curve. Because 
our results are insensitive to the lattice 
spacing for a given X/h, they are not sensi- 
tive to the lattice spring model used, but 
they would hold quantitatively for any elas- 
tic material. 

The total energy of the tetrahedron is 
expected to scale as ~ ( x / h ) ' / ~ .  The mea- 
sured total energy S + B in units of K is 
plotted in Fig. 5. The energy is consistent 
with the asymptotic formula S + B = 
6~(1 .55  ? 0.002) (X/h)'I3. The indicated 
uncertaintv reflects onlv the scatter in the 
data used. For comparison the combined 
energy of the four disconnected cones mak- 
ing up the tetrahedron is shown; namely, 

4~[4.081 log(X/a) + constant] (1) 
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T h e  cone energy is independent of the mod-
uli G and thus indenendent of the  elastic 
thickness h (23).  T h e  cone energy remains a 
significant fraction of the  tetrahedron ener-
PV for all tetrahedra studied. Nevertheless.", 
the asymptotic scaling gives less than 1096 
error for tetrahedra larger than about lo3 
times their thickness (for example, a 10-cm 
tetrahedron made of standard 0.1-mm-thick 
office paper). T h e  simulated sheets of Ter-
soff (24) and of Kroll (22) did not approach 
these size-to-thickness ratios; thus, it is not 
surprising that they saw 110 evidence for the  
energy scaling predicted here. 

T h e  ridges suggest an  approach for de-
scribing a s t r o ~ ~ g l ycrumpled sheet. From 
common observation, crumpled sheets con-
tain a laree number of vertices. W e  mav 
suppose that pairs of adjacent vertices give 
rise to  ridges like the ones seen in our 
simple shapes. T h e  neighboring ridges can 
be expected to influence one another. Still, 
this mutual influence cannot be too ereat. 
Our  study has shown that well-developed 
ridges are but little influenced by the  sur-
face at distances of order X from the  ridge 
line. This is natural, because the  ridge en-
ergy is concentrated a t  distances much 
smaller than X from this line. W e  are led to 
treat the  ridges as independent, at least as a 
first approximation. Thus, we may find the  
approximate energy of a given crumpled 
sheet from its ridge lengths X, by simply 
adding the  individual energies to obtain a 
total energy E = K C,(X,Ih)'13. 

W e  expect the  stretching-ridge concept 
to  c o n t r i b ~ ~ t eto future understanding of the  
crumpled materials like those in Fig. 1. 
LVhen the  ridges are a few hundred times 
longer than the  membrane thickness, they 
eive a auantitative account of the  deforma-
tion energy. T h e  ridge concept should aid 
in the  design of macroscopic energy-absorb-
ing materials such as packing material (4)  
and protective .r.ehicle structures (3 ) ,  for 
example, by placing defects to  control 
where ridges form. Knowledge about ridges 
mav aid the  understanding of microsco~ic  
phdnomena such as the  coiapse of grapkte  
membranes (6)  and the passage of blood 
cells through capillaries (25),  and it may 
elucidate large-scale phenomena such as 
the  b~lcklingof the  Earth's crust (26).  
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Autoencapsulation Through Intermolecular 
Forces: A Synthetic Self-Assembling 

Spherical Complex 
Robert S. Meissner, Julius Rebek Jr.," Javier de Mendoza 

The synthesis and characterization of a system for the study of molecular recognition 
phenomena are described. The system involves a tetraurea molecule that is capable of 
assembly into various associated states through hydrogen bonding. In organic solvents, 
the dynamic transition between a low-ordered (aggregate) state and a highly ordered 
dimeric assembly can be induced by the introduction of smaller molecules of appropriate 
size and shape. These smaller molecules, such as benzene, adamantanes, and fer-
rocenes, act as guests that occupy the pseudospherical capsule formed by the dimeric 
host. Among various guests, those that best fill the cavity and offer chemical comple-
mentarity to the host are preferentially encapsulated. 

H o w  molecules fit together-molecular 
recognition-can be explored with biologi-
cal macromolecules and with synthetic 
structures of low molec~llarweight. Recogni-
tion expresses structural information and 
takes the form of complementarity in size, 
shape, and chemical surfaces. A subtle ex-
pression of information is possible with self-
complementary molecules. Multiple copies 
of such molecules can give rise to ordered 

superstructures-assemblies-with functions 
that are unique to their assembled states. 111 
molecular assembly formation, favorable 
binding forces (enthalpy) compete with en-
ergy loss due to the decreased freedom of the 
individual subunits (entropy). Guest mole-
cules that match a host assembly in size and 
shape interact to produce an  increased van 
der Waals attraction, and those guests with 
functional groups capable of forming hydro-
gen bonds with the host produce increased 

R. S. Messner and J. Rebek Jr.. Massachusetts Institute electrostatic attraction. Guests that maxi-
of Technology, Department of Chemistry, Cambridge, mize the attracti.r7eforces are preferred (1 ) .
MA 02139, USA. 
J,  de Mendoza, Universdad Autonoma de Madrid, De- Here we describe a lnolecule that 
partamento de Qumica, Cantobanco, 28049 Madrid, to prol~idea host for the  rel~ersibleencapsu-
Spain. lation of sizable, complementary guests (2).  
-To whom correspondence should be addressed. Molecule 1 consists of 13 fused rings that 
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